Spaces:
Running
Running
File size: 50,624 Bytes
437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 |
"""
Code adapted from https://github.com/rpautrat/SuperPoint
Module used to generate geometrical synthetic shapes
"""
import math
import cv2 as cv
import numpy as np
import shapely.geometry
from itertools import combinations
random_state = np.random.RandomState(None)
def set_random_state(state):
global random_state
random_state = state
def get_random_color(background_color):
"""Output a random scalar in grayscale with a least a small contrast
with the background color."""
color = random_state.randint(256)
if abs(color - background_color) < 30: # not enough contrast
color = (color + 128) % 256
return color
def get_different_color(previous_colors, min_dist=50, max_count=20):
"""Output a color that contrasts with the previous colors.
Parameters:
previous_colors: np.array of the previous colors
min_dist: the difference between the new color and
the previous colors must be at least min_dist
max_count: maximal number of iterations
"""
color = random_state.randint(256)
count = 0
while np.any(np.abs(previous_colors - color) < min_dist) and count < max_count:
count += 1
color = random_state.randint(256)
return color
def add_salt_and_pepper(img):
"""Add salt and pepper noise to an image."""
noise = np.zeros((img.shape[0], img.shape[1]), dtype=np.uint8)
cv.randu(noise, 0, 255)
black = noise < 30
white = noise > 225
img[white > 0] = 255
img[black > 0] = 0
cv.blur(img, (5, 5), img)
return np.empty((0, 2), dtype=np.int)
def generate_background(
size=(960, 1280),
nb_blobs=100,
min_rad_ratio=0.01,
max_rad_ratio=0.05,
min_kernel_size=50,
max_kernel_size=300,
):
"""Generate a customized background image.
Parameters:
size: size of the image
nb_blobs: number of circles to draw
min_rad_ratio: the radius of blobs is at least min_rad_size * max(size)
max_rad_ratio: the radius of blobs is at most max_rad_size * max(size)
min_kernel_size: minimal size of the kernel
max_kernel_size: maximal size of the kernel
"""
img = np.zeros(size, dtype=np.uint8)
dim = max(size)
cv.randu(img, 0, 255)
cv.threshold(img, random_state.randint(256), 255, cv.THRESH_BINARY, img)
background_color = int(np.mean(img))
blobs = np.concatenate(
[
random_state.randint(0, size[1], size=(nb_blobs, 1)),
random_state.randint(0, size[0], size=(nb_blobs, 1)),
],
axis=1,
)
for i in range(nb_blobs):
col = get_random_color(background_color)
cv.circle(
img,
(blobs[i][0], blobs[i][1]),
np.random.randint(int(dim * min_rad_ratio), int(dim * max_rad_ratio)),
col,
-1,
)
kernel_size = random_state.randint(min_kernel_size, max_kernel_size)
cv.blur(img, (kernel_size, kernel_size), img)
return img
def generate_custom_background(
size, background_color, nb_blobs=3000, kernel_boundaries=(50, 100)
):
"""Generate a customized background to fill the shapes.
Parameters:
background_color: average color of the background image
nb_blobs: number of circles to draw
kernel_boundaries: interval of the possible sizes of the kernel
"""
img = np.zeros(size, dtype=np.uint8)
img = img + get_random_color(background_color)
blobs = np.concatenate(
[
np.random.randint(0, size[1], size=(nb_blobs, 1)),
np.random.randint(0, size[0], size=(nb_blobs, 1)),
],
axis=1,
)
for i in range(nb_blobs):
col = get_random_color(background_color)
cv.circle(img, (blobs[i][0], blobs[i][1]), np.random.randint(20), col, -1)
kernel_size = np.random.randint(kernel_boundaries[0], kernel_boundaries[1])
cv.blur(img, (kernel_size, kernel_size), img)
return img
def final_blur(img, kernel_size=(5, 5)):
"""Gaussian blur applied to an image.
Parameters:
kernel_size: size of the kernel
"""
cv.GaussianBlur(img, kernel_size, 0, img)
def ccw(A, B, C, dim):
"""Check if the points are listed in counter-clockwise order."""
if dim == 2: # only 2 dimensions
return (C[:, 1] - A[:, 1]) * (B[:, 0] - A[:, 0]) > (B[:, 1] - A[:, 1]) * (
C[:, 0] - A[:, 0]
)
else: # dim should be equal to 3
return (C[:, 1, :] - A[:, 1, :]) * (B[:, 0, :] - A[:, 0, :]) > (
B[:, 1, :] - A[:, 1, :]
) * (C[:, 0, :] - A[:, 0, :])
def intersect(A, B, C, D, dim):
"""Return true if line segments AB and CD intersect"""
return np.any(
(ccw(A, C, D, dim) != ccw(B, C, D, dim))
& (ccw(A, B, C, dim) != ccw(A, B, D, dim))
)
def keep_points_inside(points, size):
"""Keep only the points whose coordinates are inside the dimensions of
the image of size 'size'"""
mask = (
(points[:, 0] >= 0)
& (points[:, 0] < size[1])
& (points[:, 1] >= 0)
& (points[:, 1] < size[0])
)
return points[mask, :]
def get_unique_junctions(segments, min_label_len):
"""Get unique junction points from line segments."""
# Get all junctions from segments
junctions_all = np.concatenate((segments[:, :2], segments[:, 2:]), axis=0)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, segments)
return junc_points, line_map
def get_line_map(points: np.ndarray, segments: np.ndarray) -> np.ndarray:
"""Get line map given the points and segment sets."""
# create empty line map
num_point = points.shape[0]
line_map = np.zeros([num_point, num_point])
# Iterate through every segment
for idx in range(segments.shape[0]):
# Get the junctions from a single segement
seg = segments[idx, :]
junction1 = seg[:2]
junction2 = seg[2:]
# Get index
idx_junction1 = np.where((points == junction1).sum(axis=1) == 2)[0]
idx_junction2 = np.where((points == junction2).sum(axis=1) == 2)[0]
# label the corresponding entries
line_map[idx_junction1, idx_junction2] = 1
line_map[idx_junction2, idx_junction1] = 1
return line_map
def get_line_heatmap(junctions, line_map, size=[480, 640], thickness=1):
"""Get line heat map from junctions and line map."""
# Make sure that the thickness is 1
if not isinstance(thickness, int):
thickness = int(thickness)
# If the junction points are not int => round them and convert to int
if not junctions.dtype == np.int:
junctions = (np.round(junctions)).astype(np.int)
# Initialize empty map
heat_map = np.zeros(size)
if junctions.shape[0] > 0: # If empty, just return zero map
# Iterate through all the junctions
for idx in range(junctions.shape[0]):
# if no connectivity, just skip it
if line_map[idx, :].sum() == 0:
continue
# Plot the line segment
else:
# Iterate through all the connected junctions
for idx2 in np.where(line_map[idx, :] == 1)[0]:
point1 = junctions[idx, :]
point2 = junctions[idx2, :]
# Draw line
cv.line(heat_map, tuple(point1), tuple(point2), 1.0, thickness)
return heat_map
def draw_lines(img, nb_lines=10, min_len=32, min_label_len=32):
"""Draw random lines and output the positions of the pair of junctions
and line associativities.
Parameters:
nb_lines: maximal number of lines
"""
# Set line number and points placeholder
num_lines = random_state.randint(1, nb_lines)
segments = np.empty((0, 4), dtype=np.int)
points = np.empty((0, 2), dtype=np.int)
background_color = int(np.mean(img))
min_dim = min(img.shape)
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
# Generate lines one by one
for i in range(num_lines):
x1 = random_state.randint(img.shape[1])
y1 = random_state.randint(img.shape[0])
p1 = np.array([[x1, y1]])
x2 = random_state.randint(img.shape[1])
y2 = random_state.randint(img.shape[0])
p2 = np.array([[x2, y2]])
# Check the length of the line
line_length = np.sqrt(np.sum((p1 - p2) ** 2))
if line_length < min_len:
continue
# Check that there is no overlap
if intersect(segments[:, 0:2], segments[:, 2:4], p1, p2, 2):
continue
col = get_random_color(background_color)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.02)
cv.line(img, (x1, y1), (x2, y2), col, thickness)
# Only record the segments longer than min_label_len
seg_len = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
if seg_len >= min_label_len:
segments = np.concatenate([segments, np.array([[x1, y1, x2, y2]])], axis=0)
points = np.concatenate([points, np.array([[x1, y1], [x2, y2]])], axis=0)
# If no line is drawn, recursively call the function
if points.shape[0] == 0:
return draw_lines(img, nb_lines, min_len, min_label_len)
# Get the line associativity map
line_map = get_line_map(points, segments)
return {"points": points, "line_map": line_map}
def check_segment_len(segments, min_len=32):
"""Check if one of the segments is too short (True means too short)."""
point1_vec = segments[:, :2]
point2_vec = segments[:, 2:]
diff = point1_vec - point2_vec
dist = np.sqrt(np.sum(diff**2, axis=1))
if np.any(dist < min_len):
return True
else:
return False
def draw_polygon(img, max_sides=8, min_len=32, min_label_len=64):
"""Draw a polygon with a random number of corners and return the position
of the junctions + line map.
Parameters:
max_sides: maximal number of sides + 1
"""
num_corners = random_state.randint(3, max_sides)
min_dim = min(img.shape[0], img.shape[1])
rad = max(random_state.rand() * min_dim / 2, min_dim / 10)
# Center of a circle
x = random_state.randint(rad, img.shape[1] - rad)
y = random_state.randint(rad, img.shape[0] - rad)
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
# Sample num_corners points inside the circle
slices = np.linspace(0, 2 * math.pi, num_corners + 1)
angles = [
slices[i] + random_state.rand() * (slices[i + 1] - slices[i])
for i in range(num_corners)
]
points = np.array(
[
[
int(x + max(random_state.rand(), 0.4) * rad * math.cos(a)),
int(y + max(random_state.rand(), 0.4) * rad * math.sin(a)),
]
for a in angles
]
)
# Filter the points that are too close or that have an angle too flat
norms = [
np.linalg.norm(points[(i - 1) % num_corners, :] - points[i, :])
for i in range(num_corners)
]
mask = np.array(norms) > 0.01
points = points[mask, :]
num_corners = points.shape[0]
corner_angles = [
angle_between_vectors(
points[(i - 1) % num_corners, :] - points[i, :],
points[(i + 1) % num_corners, :] - points[i, :],
)
for i in range(num_corners)
]
mask = np.array(corner_angles) < (2 * math.pi / 3)
points = points[mask, :]
num_corners = points.shape[0]
# Get junction pairs from points
segments = np.zeros([0, 4])
# Used to record all the segments no matter we are going to label it or not.
segments_raw = np.zeros([0, 4])
for idx in range(num_corners):
if idx == (num_corners - 1):
p1 = points[idx]
p2 = points[0]
else:
p1 = points[idx]
p2 = points[idx + 1]
segment = np.concatenate((p1, p2), axis=0)
# Only record the segments longer than min_label_len
seg_len = np.sqrt(np.sum((p1 - p2) ** 2))
if seg_len >= min_label_len:
segments = np.concatenate((segments, segment[None, ...]), axis=0)
segments_raw = np.concatenate((segments_raw, segment[None, ...]), axis=0)
# If not enough corner, just regenerate one
if (num_corners < 3) or check_segment_len(segments_raw, min_len):
return draw_polygon(img, max_sides, min_len, min_label_len)
# Get junctions from segments
junctions_all = np.concatenate((segments[:, :2], segments[:, 2:]), axis=0)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
else:
junc_points = np.unique(junctions_all, axis=0)
# Get the line map
line_map = get_line_map(junc_points, segments)
corners = points.reshape((-1, 1, 2))
col = get_random_color(int(np.mean(img)))
cv.fillPoly(img, [corners], col)
return {"points": junc_points, "line_map": line_map}
def overlap(center, rad, centers, rads):
"""Check that the circle with (center, rad)
doesn't overlap with the other circles."""
flag = False
for i in range(len(rads)):
if np.linalg.norm(center - centers[i]) < rad + rads[i]:
flag = True
break
return flag
def angle_between_vectors(v1, v2):
"""Compute the angle (in rad) between the two vectors v1 and v2."""
v1_u = v1 / np.linalg.norm(v1)
v2_u = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))
def draw_multiple_polygons(
img,
max_sides=8,
nb_polygons=30,
min_len=32,
min_label_len=64,
safe_margin=5,
**extra
):
"""Draw multiple polygons with a random number of corners
and return the junction points + line map.
Parameters:
max_sides: maximal number of sides + 1
nb_polygons: maximal number of polygons
"""
segments = np.empty((0, 4), dtype=np.int)
label_segments = np.empty((0, 4), dtype=np.int)
centers = []
rads = []
points = np.empty((0, 2), dtype=np.int)
background_color = int(np.mean(img))
min_dim = min(img.shape[0], img.shape[1])
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
if isinstance(safe_margin, float) and safe_margin <= 1.0:
safe_margin = int(min_dim * safe_margin)
# Sequentially generate polygons
for i in range(nb_polygons):
num_corners = random_state.randint(3, max_sides)
min_dim = min(img.shape[0], img.shape[1])
# Also add the real radius
rad = max(random_state.rand() * min_dim / 2, min_dim / 9)
rad_real = rad - safe_margin
# Center of a circle
x = random_state.randint(rad, img.shape[1] - rad)
y = random_state.randint(rad, img.shape[0] - rad)
# Sample num_corners points inside the circle
slices = np.linspace(0, 2 * math.pi, num_corners + 1)
angles = [
slices[i] + random_state.rand() * (slices[i + 1] - slices[i])
for i in range(num_corners)
]
# Sample outer points and inner points
new_points = []
new_points_real = []
for a in angles:
x_offset = max(random_state.rand(), 0.4)
y_offset = max(random_state.rand(), 0.4)
new_points.append(
[
int(x + x_offset * rad * math.cos(a)),
int(y + y_offset * rad * math.sin(a)),
]
)
new_points_real.append(
[
int(x + x_offset * rad_real * math.cos(a)),
int(y + y_offset * rad_real * math.sin(a)),
]
)
new_points = np.array(new_points)
new_points_real = np.array(new_points_real)
# Filter the points that are too close or that have an angle too flat
norms = [
np.linalg.norm(new_points[(i - 1) % num_corners, :] - new_points[i, :])
for i in range(num_corners)
]
mask = np.array(norms) > 0.01
new_points = new_points[mask, :]
new_points_real = new_points_real[mask, :]
num_corners = new_points.shape[0]
corner_angles = [
angle_between_vectors(
new_points[(i - 1) % num_corners, :] - new_points[i, :],
new_points[(i + 1) % num_corners, :] - new_points[i, :],
)
for i in range(num_corners)
]
mask = np.array(corner_angles) < (2 * math.pi / 3)
new_points = new_points[mask, :]
new_points_real = new_points_real[mask, :]
num_corners = new_points.shape[0]
# Not enough corners
if num_corners < 3:
continue
# Segments for checking overlap (outer circle)
new_segments = np.zeros((1, 4, num_corners))
new_segments[:, 0, :] = [new_points[i][0] for i in range(num_corners)]
new_segments[:, 1, :] = [new_points[i][1] for i in range(num_corners)]
new_segments[:, 2, :] = [
new_points[(i + 1) % num_corners][0] for i in range(num_corners)
]
new_segments[:, 3, :] = [
new_points[(i + 1) % num_corners][1] for i in range(num_corners)
]
# Segments to record (inner circle)
new_segments_real = np.zeros((1, 4, num_corners))
new_segments_real[:, 0, :] = [new_points_real[i][0] for i in range(num_corners)]
new_segments_real[:, 1, :] = [new_points_real[i][1] for i in range(num_corners)]
new_segments_real[:, 2, :] = [
new_points_real[(i + 1) % num_corners][0] for i in range(num_corners)
]
new_segments_real[:, 3, :] = [
new_points_real[(i + 1) % num_corners][1] for i in range(num_corners)
]
# Check that the polygon will not overlap with pre-existing shapes
if intersect(
segments[:, 0:2, None],
segments[:, 2:4, None],
new_segments[:, 0:2, :],
new_segments[:, 2:4, :],
3,
) or overlap(np.array([x, y]), rad, centers, rads):
continue
# Check that the the edges of the polygon is not too short
if check_segment_len(new_segments_real, min_len):
continue
# If the polygon is valid, append it to the polygon set
centers.append(np.array([x, y]))
rads.append(rad)
new_segments = np.reshape(np.swapaxes(new_segments, 0, 2), (-1, 4))
segments = np.concatenate([segments, new_segments], axis=0)
# Only record the segments longer than min_label_len
new_segments_real = np.reshape(np.swapaxes(new_segments_real, 0, 2), (-1, 4))
points1 = new_segments_real[:, :2]
points2 = new_segments_real[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
new_label_segment = new_segments_real[seg_len >= min_label_len, :]
label_segments = np.concatenate([label_segments, new_label_segment], axis=0)
# Color the polygon with a custom background
corners = new_points_real.reshape((-1, 1, 2))
mask = np.zeros(img.shape, np.uint8)
custom_background = generate_custom_background(
img.shape, background_color, **extra
)
cv.fillPoly(mask, [corners], 255)
locs = np.where(mask != 0)
img[locs[0], locs[1]] = custom_background[locs[0], locs[1]]
points = np.concatenate([points, new_points], axis=0)
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
return {"points": junc_points, "line_map": line_map}
def draw_ellipses(img, nb_ellipses=20):
"""Draw several ellipses.
Parameters:
nb_ellipses: maximal number of ellipses
"""
centers = np.empty((0, 2), dtype=np.int)
rads = np.empty((0, 1), dtype=np.int)
min_dim = min(img.shape[0], img.shape[1]) / 4
background_color = int(np.mean(img))
for i in range(nb_ellipses):
ax = int(max(random_state.rand() * min_dim, min_dim / 5))
ay = int(max(random_state.rand() * min_dim, min_dim / 5))
max_rad = max(ax, ay)
x = random_state.randint(max_rad, img.shape[1] - max_rad) # center
y = random_state.randint(max_rad, img.shape[0] - max_rad)
new_center = np.array([[x, y]])
# Check that the ellipsis will not overlap with pre-existing shapes
diff = centers - new_center
if np.any(max_rad > (np.sqrt(np.sum(diff * diff, axis=1)) - rads)):
continue
centers = np.concatenate([centers, new_center], axis=0)
rads = np.concatenate([rads, np.array([[max_rad]])], axis=0)
col = get_random_color(background_color)
angle = random_state.rand() * 90
cv.ellipse(img, (x, y), (ax, ay), angle, 0, 360, col, -1)
return np.empty((0, 2), dtype=np.int)
def draw_star(img, nb_branches=6, min_len=32, min_label_len=64):
"""Draw a star and return the junction points + line map.
Parameters:
nb_branches: number of branches of the star
"""
num_branches = random_state.randint(3, nb_branches)
min_dim = min(img.shape[0], img.shape[1])
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.025)
rad = max(random_state.rand() * min_dim / 2, min_dim / 5)
x = random_state.randint(rad, img.shape[1] - rad)
y = random_state.randint(rad, img.shape[0] - rad)
# Sample num_branches points inside the circle
slices = np.linspace(0, 2 * math.pi, num_branches + 1)
angles = [
slices[i] + random_state.rand() * (slices[i + 1] - slices[i])
for i in range(num_branches)
]
points = np.array(
[
[
int(x + max(random_state.rand(), 0.3) * rad * math.cos(a)),
int(y + max(random_state.rand(), 0.3) * rad * math.sin(a)),
]
for a in angles
]
)
points = np.concatenate(([[x, y]], points), axis=0)
# Generate segments and check the length
segments = np.array([[x, y, _[0], _[1]] for _ in points[1:, :]])
if check_segment_len(segments, min_len):
return draw_star(img, nb_branches, min_len, min_label_len)
# Only record the segments longer than min_label_len
points1 = segments[:, :2]
points2 = segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
background_color = int(np.mean(img))
for i in range(1, num_branches + 1):
col = get_random_color(background_color)
cv.line(
img,
(points[0][0], points[0][1]),
(points[i][0], points[i][1]),
col,
thickness,
)
return {"points": junc_points, "line_map": line_map}
def draw_checkerboard_multiseg(
img,
max_rows=7,
max_cols=7,
transform_params=(0.05, 0.15),
min_label_len=64,
seed=None,
):
"""Draw a checkerboard and output the junctions + line segments
Parameters:
max_rows: maximal number of rows + 1
max_cols: maximal number of cols + 1
transform_params: set the range of the parameters of the transformations
"""
if seed is None:
global random_state
else:
random_state = np.random.RandomState(seed)
background_color = int(np.mean(img))
min_dim = min(img.shape)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
# Create the grid
rows = random_state.randint(3, max_rows) # number of rows
cols = random_state.randint(3, max_cols) # number of cols
s = min((img.shape[1] - 1) // cols, (img.shape[0] - 1) // rows)
x_coord = np.tile(range(cols + 1), rows + 1).reshape(((rows + 1) * (cols + 1), 1))
y_coord = np.repeat(range(rows + 1), cols + 1).reshape(((rows + 1) * (cols + 1), 1))
# points are the grid coordinates
points = s * np.concatenate([x_coord, y_coord], axis=1)
# Warp the grid using an affine transformation and an homography
alpha_affine = np.max(img.shape) * (
transform_params[0] + random_state.rand() * transform_params[1]
)
center_square = np.float32(img.shape) // 2
min_dim = min(img.shape)
square_size = min_dim // 3
pts1 = np.float32(
[
center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size,
[center_square[0] - square_size, center_square[1] + square_size],
]
)
pts2 = pts1 + random_state.uniform(
-alpha_affine, alpha_affine, size=pts1.shape
).astype(np.float32)
affine_transform = cv.getAffineTransform(pts1[:3], pts2[:3])
pts2 = pts1 + random_state.uniform(
-alpha_affine / 2, alpha_affine / 2, size=pts1.shape
).astype(np.float32)
perspective_transform = cv.getPerspectiveTransform(pts1, pts2)
# Apply the affine transformation
points = np.transpose(
np.concatenate((points, np.ones(((rows + 1) * (cols + 1), 1))), axis=1)
)
warped_points = np.transpose(np.dot(affine_transform, points))
# Apply the homography
warped_col0 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[0, :2]), axis=1),
perspective_transform[0, 2],
)
warped_col1 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[1, :2]), axis=1),
perspective_transform[1, 2],
)
warped_col2 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[2, :2]), axis=1),
perspective_transform[2, 2],
)
warped_col0 = np.divide(warped_col0, warped_col2)
warped_col1 = np.divide(warped_col1, warped_col2)
warped_points = np.concatenate([warped_col0[:, None], warped_col1[:, None]], axis=1)
warped_points_float = warped_points.copy()
warped_points = warped_points.astype(int)
# Fill the rectangles
colors = np.zeros((rows * cols,), np.int32)
for i in range(rows):
for j in range(cols):
# Get a color that contrast with the neighboring cells
if i == 0 and j == 0:
col = get_random_color(background_color)
else:
neighboring_colors = []
if i != 0:
neighboring_colors.append(colors[(i - 1) * cols + j])
if j != 0:
neighboring_colors.append(colors[i * cols + j - 1])
col = get_different_color(np.array(neighboring_colors))
colors[i * cols + j] = col
# Fill the cell
cv.fillConvexPoly(
img,
np.array(
[
(
warped_points[i * (cols + 1) + j, 0],
warped_points[i * (cols + 1) + j, 1],
),
(
warped_points[i * (cols + 1) + j + 1, 0],
warped_points[i * (cols + 1) + j + 1, 1],
),
(
warped_points[(i + 1) * (cols + 1) + j + 1, 0],
warped_points[(i + 1) * (cols + 1) + j + 1, 1],
),
(
warped_points[(i + 1) * (cols + 1) + j, 0],
warped_points[(i + 1) * (cols + 1) + j, 1],
),
]
),
col,
)
label_segments = np.empty([0, 4], dtype=np.int)
# Iterate through rows
for row_idx in range(rows + 1):
# Include all the combination of the junctions
# Iterate through all the combination of junction index in that row
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(row_idx * (cols + 1), (row_idx + 1) * (cols + 1), 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
label_segments = np.concatenate((label_segments, multi_seg), axis=0)
# Iterate through columns
for col_idx in range(cols + 1): # for 5 columns, we will have 5 + 1 edges
# Include all the combination of the junctions
# Iterate throuhg all the combination of junction index in that column
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(col_idx, col_idx + ((rows + 1) * (cols + 1)), cols + 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
label_segments = np.concatenate((label_segments, multi_seg), axis=0)
label_segments_filtered = np.zeros([0, 4])
# Define image boundary polygon (in x y manner)
image_poly = shapely.geometry.Polygon(
[
[0, 0],
[img.shape[1] - 1, 0],
[img.shape[1] - 1, img.shape[0] - 1],
[0, img.shape[0] - 1],
]
)
for idx in range(label_segments.shape[0]):
# Get the line segment
seg_raw = label_segments[idx, :]
seg = shapely.geometry.LineString([seg_raw[:2], seg_raw[2:]])
# The line segment is just inside the image.
if seg.intersection(image_poly) == seg:
label_segments_filtered = np.concatenate(
(label_segments_filtered, seg_raw[None, ...]), axis=0
)
# Intersect with the image.
elif seg.intersects(image_poly):
# Check intersection
try:
p = np.array(seg.intersection(image_poly).coords).reshape([-1, 4])
# If intersect with eact one point
except:
continue
segment = p
label_segments_filtered = np.concatenate(
(label_segments_filtered, segment), axis=0
)
else:
continue
label_segments = np.round(label_segments_filtered).astype(np.int)
# Only record the segments longer than min_label_len
points1 = label_segments[:, :2]
points2 = label_segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = label_segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junc_points, line_map = get_unique_junctions(label_segments, min_label_len)
# Draw lines on the boundaries of the board at random
nb_rows = random_state.randint(2, rows + 2)
nb_cols = random_state.randint(2, cols + 2)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.015)
for _ in range(nb_rows):
row_idx = random_state.randint(rows + 1)
col_idx1 = random_state.randint(cols + 1)
col_idx2 = random_state.randint(cols + 1)
col = get_random_color(background_color)
cv.line(
img,
(
warped_points[row_idx * (cols + 1) + col_idx1, 0],
warped_points[row_idx * (cols + 1) + col_idx1, 1],
),
(
warped_points[row_idx * (cols + 1) + col_idx2, 0],
warped_points[row_idx * (cols + 1) + col_idx2, 1],
),
col,
thickness,
)
for _ in range(nb_cols):
col_idx = random_state.randint(cols + 1)
row_idx1 = random_state.randint(rows + 1)
row_idx2 = random_state.randint(rows + 1)
col = get_random_color(background_color)
cv.line(
img,
(
warped_points[row_idx1 * (cols + 1) + col_idx, 0],
warped_points[row_idx1 * (cols + 1) + col_idx, 1],
),
(
warped_points[row_idx2 * (cols + 1) + col_idx, 0],
warped_points[row_idx2 * (cols + 1) + col_idx, 1],
),
col,
thickness,
)
# Keep only the points inside the image
points = keep_points_inside(warped_points, img.shape[:2])
return {"points": junc_points, "line_map": line_map}
def draw_stripes_multiseg(
img,
max_nb_cols=13,
min_len=0.04,
min_label_len=64,
transform_params=(0.05, 0.15),
seed=None,
):
"""Draw stripes in a distorted rectangle
and output the junctions points + line map.
Parameters:
max_nb_cols: maximal number of stripes to be drawn
min_width_ratio: the minimal width of a stripe is
min_width_ratio * smallest dimension of the image
transform_params: set the range of the parameters of the transformations
"""
# Set the optional random seed (most for debugging)
if seed is None:
global random_state
else:
random_state = np.random.RandomState(seed)
background_color = int(np.mean(img))
# Create the grid
board_size = (
int(img.shape[0] * (1 + random_state.rand())),
int(img.shape[1] * (1 + random_state.rand())),
)
# Number of cols
col = random_state.randint(5, max_nb_cols)
cols = np.concatenate(
[board_size[1] * random_state.rand(col - 1), np.array([0, board_size[1] - 1])],
axis=0,
)
cols = np.unique(cols.astype(int))
# Remove the indices that are too close
min_dim = min(img.shape)
# Convert length constrain to pixel if given float number
if isinstance(min_len, float) and min_len <= 1.0:
min_len = int(min_dim * min_len)
if isinstance(min_label_len, float) and min_label_len <= 1.0:
min_label_len = int(min_dim * min_label_len)
cols = cols[
(np.concatenate([cols[1:], np.array([board_size[1] + min_len])], axis=0) - cols)
>= min_len
]
# Update the number of cols
col = cols.shape[0] - 1
cols = np.reshape(cols, (col + 1, 1))
cols1 = np.concatenate([cols, np.zeros((col + 1, 1), np.int32)], axis=1)
cols2 = np.concatenate(
[cols, (board_size[0] - 1) * np.ones((col + 1, 1), np.int32)], axis=1
)
points = np.concatenate([cols1, cols2], axis=0)
# Warp the grid using an affine transformation and a homography
alpha_affine = np.max(img.shape) * (
transform_params[0] + random_state.rand() * transform_params[1]
)
center_square = np.float32(img.shape) // 2
square_size = min(img.shape) // 3
pts1 = np.float32(
[
center_square + square_size,
[center_square[0] + square_size, center_square[1] - square_size],
center_square - square_size,
[center_square[0] - square_size, center_square[1] + square_size],
]
)
pts2 = pts1 + random_state.uniform(
-alpha_affine, alpha_affine, size=pts1.shape
).astype(np.float32)
affine_transform = cv.getAffineTransform(pts1[:3], pts2[:3])
pts2 = pts1 + random_state.uniform(
-alpha_affine / 2, alpha_affine / 2, size=pts1.shape
).astype(np.float32)
perspective_transform = cv.getPerspectiveTransform(pts1, pts2)
# Apply the affine transformation
points = np.transpose(np.concatenate((points, np.ones((2 * (col + 1), 1))), axis=1))
warped_points = np.transpose(np.dot(affine_transform, points))
# Apply the homography
warped_col0 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[0, :2]), axis=1),
perspective_transform[0, 2],
)
warped_col1 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[1, :2]), axis=1),
perspective_transform[1, 2],
)
warped_col2 = np.add(
np.sum(np.multiply(warped_points, perspective_transform[2, :2]), axis=1),
perspective_transform[2, 2],
)
warped_col0 = np.divide(warped_col0, warped_col2)
warped_col1 = np.divide(warped_col1, warped_col2)
warped_points = np.concatenate([warped_col0[:, None], warped_col1[:, None]], axis=1)
warped_points_float = warped_points.copy()
warped_points = warped_points.astype(int)
# Fill the rectangles and get the segments
color = get_random_color(background_color)
# segments_debug = np.zeros([0, 4])
for i in range(col):
# Fill the color
color = (color + 128 + random_state.randint(-30, 30)) % 256
cv.fillConvexPoly(
img,
np.array(
[
(warped_points[i, 0], warped_points[i, 1]),
(warped_points[i + 1, 0], warped_points[i + 1, 1]),
(warped_points[i + col + 2, 0], warped_points[i + col + 2, 1]),
(warped_points[i + col + 1, 0], warped_points[i + col + 1, 1]),
]
),
color,
)
segments = np.zeros([0, 4])
row = 1 # in stripes case
# Iterate through rows
for row_idx in range(row + 1):
# Include all the combination of the junctions
# Iterate through all the combination of junction index in that row
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(row_idx * (col + 1), (row_idx + 1) * (col + 1), 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
segments = np.concatenate((segments, multi_seg), axis=0)
# Iterate through columns
for col_idx in range(col + 1): # for 5 columns, we will have 5 + 1 edges.
# Include all the combination of the junctions
# Iterate throuhg all the combination of junction index in that column
multi_seg_lst = [
np.array(
[
warped_points_float[id1, 0],
warped_points_float[id1, 1],
warped_points_float[id2, 0],
warped_points_float[id2, 1],
]
)[None, ...]
for (id1, id2) in combinations(
range(col_idx, col_idx + (row * col) + 2, col + 1), 2
)
]
multi_seg = np.concatenate(multi_seg_lst, axis=0)
segments = np.concatenate((segments, multi_seg), axis=0)
# Select and refine the segments
segments_new = np.zeros([0, 4])
# Define image boundary polygon (in x y manner)
image_poly = shapely.geometry.Polygon(
[
[0, 0],
[img.shape[1] - 1, 0],
[img.shape[1] - 1, img.shape[0] - 1],
[0, img.shape[0] - 1],
]
)
for idx in range(segments.shape[0]):
# Get the line segment
seg_raw = segments[idx, :]
seg = shapely.geometry.LineString([seg_raw[:2], seg_raw[2:]])
# The line segment is just inside the image.
if seg.intersection(image_poly) == seg:
segments_new = np.concatenate((segments_new, seg_raw[None, ...]), axis=0)
# Intersect with the image.
elif seg.intersects(image_poly):
# Check intersection
try:
p = np.array(seg.intersection(image_poly).coords).reshape([-1, 4])
# If intersect at exact one point, just continue.
except:
continue
segment = p
segments_new = np.concatenate((segments_new, segment), axis=0)
else:
continue
segments = (np.round(segments_new)).astype(np.int)
# Only record the segments longer than min_label_len
points1 = segments[:, :2]
points2 = segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
# Draw lines on the boundaries of the stripes at random
nb_rows = random_state.randint(2, 5)
nb_cols = random_state.randint(2, col + 2)
thickness = random_state.randint(min_dim * 0.01, min_dim * 0.011)
for _ in range(nb_rows):
row_idx = random_state.choice([0, col + 1])
col_idx1 = random_state.randint(col + 1)
col_idx2 = random_state.randint(col + 1)
color = get_random_color(background_color)
cv.line(
img,
(
warped_points[row_idx + col_idx1, 0],
warped_points[row_idx + col_idx1, 1],
),
(
warped_points[row_idx + col_idx2, 0],
warped_points[row_idx + col_idx2, 1],
),
color,
thickness,
)
for _ in range(nb_cols):
col_idx = random_state.randint(col + 1)
color = get_random_color(background_color)
cv.line(
img,
(warped_points[col_idx, 0], warped_points[col_idx, 1]),
(warped_points[col_idx + col + 1, 0], warped_points[col_idx + col + 1, 1]),
color,
thickness,
)
# Keep only the points inside the image
# points = keep_points_inside(warped_points, img.shape[:2])
return {"points": junc_points, "line_map": line_map}
def draw_cube(
img,
min_size_ratio=0.2,
min_label_len=64,
scale_interval=(0.4, 0.6),
trans_interval=(0.5, 0.2),
):
"""Draw a 2D projection of a cube and output the visible juntions.
Parameters:
min_size_ratio: min(img.shape) * min_size_ratio is the smallest
achievable cube side size
scale_interval: the scale is between scale_interval[0] and
scale_interval[0]+scale_interval[1]
trans_interval: the translation is between img.shape*trans_interval[0]
and img.shape*(trans_interval[0] + trans_interval[1])
"""
# Generate a cube and apply to it an affine transformation
# The order matters!
# The indices of two adjacent vertices differ only of one bit (Gray code)
background_color = int(np.mean(img))
min_dim = min(img.shape[:2])
min_side = min_dim * min_size_ratio
lx = min_side + random_state.rand() * 2 * min_dim / 3 # dims of the cube
ly = min_side + random_state.rand() * 2 * min_dim / 3
lz = min_side + random_state.rand() * 2 * min_dim / 3
cube = np.array(
[
[0, 0, 0],
[lx, 0, 0],
[0, ly, 0],
[lx, ly, 0],
[0, 0, lz],
[lx, 0, lz],
[0, ly, lz],
[lx, ly, lz],
]
)
rot_angles = random_state.rand(3) * 3 * math.pi / 10.0 + math.pi / 10.0
rotation_1 = np.array(
[
[math.cos(rot_angles[0]), -math.sin(rot_angles[0]), 0],
[math.sin(rot_angles[0]), math.cos(rot_angles[0]), 0],
[0, 0, 1],
]
)
rotation_2 = np.array(
[
[1, 0, 0],
[0, math.cos(rot_angles[1]), -math.sin(rot_angles[1])],
[0, math.sin(rot_angles[1]), math.cos(rot_angles[1])],
]
)
rotation_3 = np.array(
[
[math.cos(rot_angles[2]), 0, -math.sin(rot_angles[2])],
[0, 1, 0],
[math.sin(rot_angles[2]), 0, math.cos(rot_angles[2])],
]
)
scaling = np.array(
[
[scale_interval[0] + random_state.rand() * scale_interval[1], 0, 0],
[0, scale_interval[0] + random_state.rand() * scale_interval[1], 0],
[0, 0, scale_interval[0] + random_state.rand() * scale_interval[1]],
]
)
trans = np.array(
[
img.shape[1] * trans_interval[0]
+ random_state.randint(
-img.shape[1] * trans_interval[1], img.shape[1] * trans_interval[1]
),
img.shape[0] * trans_interval[0]
+ random_state.randint(
-img.shape[0] * trans_interval[1], img.shape[0] * trans_interval[1]
),
0,
]
)
cube = trans + np.transpose(
np.dot(
scaling,
np.dot(
rotation_1, np.dot(rotation_2, np.dot(rotation_3, np.transpose(cube)))
),
)
)
# The hidden corner is 0 by construction
# The front one is 7
cube = cube[:, :2] # project on the plane z=0
cube = cube.astype(int)
points = cube[1:, :] # get rid of the hidden corner
# Get the three visible faces
faces = np.array([[7, 3, 1, 5], [7, 5, 4, 6], [7, 6, 2, 3]])
# Get all visible line segments
segments = np.zeros([0, 4])
# Iterate through all the faces
for face_idx in range(faces.shape[0]):
face = faces[face_idx, :]
# Brute-forcely expand all the segments
segment = np.array(
[
np.concatenate((cube[face[0]], cube[face[1]]), axis=0),
np.concatenate((cube[face[1]], cube[face[2]]), axis=0),
np.concatenate((cube[face[2]], cube[face[3]]), axis=0),
np.concatenate((cube[face[3]], cube[face[0]]), axis=0),
]
)
segments = np.concatenate((segments, segment), axis=0)
# Select and refine the segments
segments_new = np.zeros([0, 4])
# Define image boundary polygon (in x y manner)
image_poly = shapely.geometry.Polygon(
[
[0, 0],
[img.shape[1] - 1, 0],
[img.shape[1] - 1, img.shape[0] - 1],
[0, img.shape[0] - 1],
]
)
for idx in range(segments.shape[0]):
# Get the line segment
seg_raw = segments[idx, :]
seg = shapely.geometry.LineString([seg_raw[:2], seg_raw[2:]])
# The line segment is just inside the image.
if seg.intersection(image_poly) == seg:
segments_new = np.concatenate((segments_new, seg_raw[None, ...]), axis=0)
# Intersect with the image.
elif seg.intersects(image_poly):
try:
p = np.array(seg.intersection(image_poly).coords).reshape([-1, 4])
except:
continue
segment = p
segments_new = np.concatenate((segments_new, segment), axis=0)
else:
continue
segments = (np.round(segments_new)).astype(np.int)
# Only record the segments longer than min_label_len
points1 = segments[:, :2]
points2 = segments[:, 2:]
seg_len = np.sqrt(np.sum((points1 - points2) ** 2, axis=1))
label_segments = segments[seg_len >= min_label_len, :]
# Get all junctions from label segments
junctions_all = np.concatenate(
(label_segments[:, :2], label_segments[:, 2:]), axis=0
)
if junctions_all.shape[0] == 0:
junc_points = None
line_map = None
# Get all unique junction points
else:
junc_points = np.unique(junctions_all, axis=0)
# Generate line map from points and segments
line_map = get_line_map(junc_points, label_segments)
# Fill the faces and draw the contours
col_face = get_random_color(background_color)
for i in [0, 1, 2]:
cv.fillPoly(img, [cube[faces[i]].reshape((-1, 1, 2))], col_face)
thickness = random_state.randint(min_dim * 0.003, min_dim * 0.015)
for i in [0, 1, 2]:
for j in [0, 1, 2, 3]:
col_edge = (
col_face + 128 + random_state.randint(-64, 64)
) % 256 # color that constrats with the face color
cv.line(
img,
(cube[faces[i][j], 0], cube[faces[i][j], 1]),
(cube[faces[i][(j + 1) % 4], 0], cube[faces[i][(j + 1) % 4], 1]),
col_edge,
thickness,
)
return {"points": junc_points, "line_map": line_map}
def gaussian_noise(img):
"""Apply random noise to the image."""
cv.randu(img, 0, 255)
return {"points": None, "line_map": None}
|