Spaces:
Running
Running
File size: 3,001 Bytes
c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f c6cae91 358ab8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import argparse
import imagesize
import numpy as np
import os
base_path = "data/megadepth"
# Remove the trailing / if need be.
if base_path[-1] in ["/", "\\"]:
base_path = base_path[:-1]
base_depth_path = os.path.join(base_path, "phoenix/S6/zl548/MegaDepth_v1")
base_undistorted_sfm_path = os.path.join(base_path, "Undistorted_SfM")
scene_ids = os.listdir(base_undistorted_sfm_path)
for scene_id in scene_ids:
if os.path.exists(
f"{base_path}/prep_scene_info/detections/detections_{scene_id}.npy"
):
print(f"skipping {scene_id} as it exists")
continue
undistorted_sparse_path = os.path.join(
base_undistorted_sfm_path, scene_id, "sparse-txt"
)
if not os.path.exists(undistorted_sparse_path):
print("sparse path doesnt exist")
continue
depths_path = os.path.join(base_depth_path, scene_id, "dense0", "depths")
if not os.path.exists(depths_path):
print("depths doesnt exist")
continue
images_path = os.path.join(base_undistorted_sfm_path, scene_id, "images")
if not os.path.exists(images_path):
print("images path doesnt exist")
continue
# Process cameras.txt
if not os.path.exists(os.path.join(undistorted_sparse_path, "cameras.txt")):
print("no cameras")
continue
with open(os.path.join(undistorted_sparse_path, "cameras.txt"), "r") as f:
raw = f.readlines()[3:] # skip the header
camera_intrinsics = {}
for camera in raw:
camera = camera.split(" ")
camera_intrinsics[int(camera[0])] = [float(elem) for elem in camera[2:]]
# Process points3D.txt
with open(os.path.join(undistorted_sparse_path, "points3D.txt"), "r") as f:
raw = f.readlines()[3:] # skip the header
points3D = {}
for point3D in raw:
point3D = point3D.split(" ")
points3D[int(point3D[0])] = np.array(
[float(point3D[1]), float(point3D[2]), float(point3D[3])]
)
# Process images.txt
with open(os.path.join(undistorted_sparse_path, "images.txt"), "r") as f:
raw = f.readlines()[4:] # skip the header
image_id_to_idx = {}
image_names = []
raw_pose = []
camera = []
points3D_id_to_2D = []
n_points3D = []
id_to_detections = {}
for idx, (image, points) in enumerate(zip(raw[::2], raw[1::2])):
image = image.split(" ")
points = points.split(" ")
image_id_to_idx[int(image[0])] = idx
image_name = image[-1].strip("\n")
image_names.append(image_name)
raw_pose.append([float(elem) for elem in image[1:-2]])
camera.append(int(image[-2]))
points_np = np.array(points).astype(np.float32).reshape(len(points) // 3, 3)
visible_points = points_np[points_np[:, 2] != -1]
id_to_detections[idx] = visible_points
np.save(
f"{base_path}/prep_scene_info/detections/detections_{scene_id}.npy",
id_to_detections,
)
print(f"{scene_id} done")
|