Spaces:
Running
Running
File size: 7,409 Bytes
9223079 7a97fc3 db8deff 9223079 db8deff 9223079 db8deff 9223079 db8deff 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
# figsize = (size*n, size*3/4) if size is not None else None
figsize = (size * n, size * 6 / 5) if size is not None else None
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
fig.tight_layout(pad=pad)
return fig
def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)):
"""Plot line matches for existing images with multiple colors.
Args:
lines: list of ndarrays of size (N, 2, 2).
correct_matches: bool array of size (N,) indicating correct matches.
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
n_lines = len(lines[0])
colors = sns.color_palette("husl", n_colors=n_lines)
np.random.shuffle(colors)
alphas = np.ones(n_lines)
# If correct_matches is not None, display wrong matches with a low alpha
if correct_matches is not None:
alphas[~np.array(correct_matches)] = 0.2
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines
for a, l in zip(axes, lines):
# Transform the points into the figure coordinate system
transFigure = fig.transFigure.inverted()
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
fig.lines += [
matplotlib.lines.Line2D(
(endpoint0[i, 0], endpoint1[i, 0]),
(endpoint0[i, 1], endpoint1[i, 1]),
zorder=1,
transform=fig.transFigure,
c=colors[i],
alpha=alphas[i],
linewidth=lw,
)
for i in range(n_lines)
]
return fig
def make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=None,
kpts0=None,
kpts1=None,
text=[],
dpi=75,
path=None,
pad=0,
):
# draw image pair
# assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0) # , cmap='gray')
axes[1].imshow(img1) # , cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
if titles is not None:
axes[i].set_title(titles[i])
plt.tight_layout(pad=pad)
if kpts0 is not None:
assert kpts1 is not None
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)
# draw matches
if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
fig.lines = [
matplotlib.lines.Line2D(
(fkpts0[i, 0], fkpts1[i, 0]),
(fkpts0[i, 1], fkpts1[i, 1]),
transform=fig.transFigure,
c=color[i],
linewidth=2,
)
for i in range(len(mkpts0))
]
# freeze the axes to prevent the transform to change
axes[0].autoscale(enable=False)
axes[1].autoscale(enable=False)
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)
# put txts
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
else:
return fig
def error_colormap(err, thr, alpha=1.0):
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
x = 1 - np.clip(err / (thr * 2), 0, 1)
return np.clip(
np.stack(
[2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1
),
0,
1,
)
np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)
def fig2im(fig):
fig.canvas.draw()
w, h = fig.canvas.get_width_height()
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
im = buf_ndarray.reshape(h, w, 3)
return im
def draw_matches(
mkpts0, mkpts1, img0, img1, conf, titles=None, dpi=150, path=None, pad=0.5
):
thr = 5e-4
thr = 0.5
color = error_colormap(conf, thr, alpha=0.1)
text = [
f"image name",
f"#Matches: {len(mkpts0)}",
]
if path:
fig2im(
make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=titles,
text=text,
path=path,
dpi=dpi,
pad=pad,
)
)
else:
return fig2im(
make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=titles,
text=text,
pad=pad,
dpi=dpi,
)
)
def draw_image_pairs(img0, img1, text=[], dpi=75, path=None, pad=0.5):
# draw image pair
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0) # , cmap='gray')
axes[1].imshow(img1) # , cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
plt.tight_layout(pad=pad)
# put txts
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
else:
return fig2im(fig)
|