File size: 7,409 Bytes
9223079
 
7a97fc3
db8deff
9223079
 
db8deff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8deff
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8deff
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import seaborn as sns


def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
    """Plot a set of images horizontally.
    Args:
        imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images.
    """
    n = len(imgs)
    if not isinstance(cmaps, (list, tuple)):
        cmaps = [cmaps] * n
    # figsize = (size*n, size*3/4) if size is not None else None
    figsize = (size * n, size * 6 / 5) if size is not None else None
    fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)

    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    fig.tight_layout(pad=pad)
    return fig


def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)):
    """Plot line matches for existing images with multiple colors.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        correct_matches: bool array of size (N,) indicating correct matches.
        lw: line width as float pixels.
        indices: indices of the images to draw the matches on.
    """
    n_lines = len(lines[0])
    colors = sns.color_palette("husl", n_colors=n_lines)
    np.random.shuffle(colors)
    alphas = np.ones(n_lines)
    # If correct_matches is not None, display wrong matches with a low alpha
    if correct_matches is not None:
        alphas[~np.array(correct_matches)] = 0.2

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines
    for a, l in zip(axes, lines):
        # Transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
        fig.lines += [
            matplotlib.lines.Line2D(
                (endpoint0[i, 0], endpoint1[i, 0]),
                (endpoint0[i, 1], endpoint1[i, 1]),
                zorder=1,
                transform=fig.transFigure,
                c=colors[i],
                alpha=alphas[i],
                linewidth=lw,
            )
            for i in range(n_lines)
        ]

    return fig


def make_matching_figure(
    img0,
    img1,
    mkpts0,
    mkpts1,
    color,
    titles=None,
    kpts0=None,
    kpts1=None,
    text=[],
    dpi=75,
    path=None,
    pad=0,
):
    # draw image pair
    # assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0)  # , cmap='gray')
    axes[1].imshow(img1)  # , cmap='gray')
    for i in range(2):  # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
        if titles is not None:
            axes[i].set_title(titles[i])

    plt.tight_layout(pad=pad)

    if kpts0 is not None:
        assert kpts1 is not None
        axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
        axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)

    # draw matches
    if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
        fig.canvas.draw()
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
        fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
        fig.lines = [
            matplotlib.lines.Line2D(
                (fkpts0[i, 0], fkpts1[i, 0]),
                (fkpts0[i, 1], fkpts1[i, 1]),
                transform=fig.transFigure,
                c=color[i],
                linewidth=2,
            )
            for i in range(len(mkpts0))
        ]

        # freeze the axes to prevent the transform to change
        axes[0].autoscale(enable=False)
        axes[1].autoscale(enable=False)

        axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
        axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)

    # put txts
    txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
    fig.text(
        0.01,
        0.99,
        "\n".join(text),
        transform=fig.axes[0].transAxes,
        fontsize=15,
        va="top",
        ha="left",
        color=txt_color,
    )

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
        plt.close()
    else:
        return fig


def error_colormap(err, thr, alpha=1.0):
    assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
    x = 1 - np.clip(err / (thr * 2), 0, 1)
    return np.clip(
        np.stack(
            [2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1
        ),
        0,
        1,
    )


np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)


def fig2im(fig):
    fig.canvas.draw()
    w, h = fig.canvas.get_width_height()
    buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
    im = buf_ndarray.reshape(h, w, 3)
    return im


def draw_matches(
    mkpts0, mkpts1, img0, img1, conf, titles=None, dpi=150, path=None, pad=0.5
):
    thr = 5e-4
    thr = 0.5
    color = error_colormap(conf, thr, alpha=0.1)
    text = [
        f"image name",
        f"#Matches: {len(mkpts0)}",
    ]
    if path:
        fig2im(
            make_matching_figure(
                img0,
                img1,
                mkpts0,
                mkpts1,
                color,
                titles=titles,
                text=text,
                path=path,
                dpi=dpi,
                pad=pad,
            )
        )
    else:
        return fig2im(
            make_matching_figure(
                img0,
                img1,
                mkpts0,
                mkpts1,
                color,
                titles=titles,
                text=text,
                pad=pad,
                dpi=dpi,
            )
        )


def draw_image_pairs(img0, img1, text=[], dpi=75, path=None, pad=0.5):
    # draw image pair
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0)  # , cmap='gray')
    axes[1].imshow(img1)  # , cmap='gray')
    for i in range(2):  # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
    plt.tight_layout(pad=pad)

    # put txts
    txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
    fig.text(
        0.01,
        0.99,
        "\n".join(text),
        transform=fig.axes[0].transAxes,
        fontsize=15,
        va="top",
        ha="left",
        color=txt_color,
    )

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
        plt.close()
    else:
        return fig2im(fig)