File size: 9,830 Bytes
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
10b4a5f
 
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
 
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use


from PIL import Image

from tools import common
from tools.dataloader import norm_RGB
from nets.patchnet import *
from os import path

from extract import load_network, NonMaxSuppression, extract_multiscale

# Kapture is a pivot file format, based on text and binary files, used to describe SfM (Structure From Motion)
# and more generally sensor-acquired data
# it can be installed with
# pip install kapture
# for more information check out https://github.com/naver/kapture
import kapture
from kapture.io.records import get_image_fullpath
from kapture.io.csv import kapture_from_dir
from kapture.io.csv import (
    get_feature_csv_fullpath,
    keypoints_to_file,
    descriptors_to_file,
)
from kapture.io.features import (
    get_keypoints_fullpath,
    keypoints_check_dir,
    image_keypoints_to_file,
)
from kapture.io.features import (
    get_descriptors_fullpath,
    descriptors_check_dir,
    image_descriptors_to_file,
)
from kapture.io.csv import get_all_tar_handlers


def extract_kapture_keypoints(args):
    """
    Extract r2d2 keypoints and descritors to the kapture format directly
    """
    print("extract_kapture_keypoints...")
    with get_all_tar_handlers(
        args.kapture_root,
        mode={
            kapture.Keypoints: "a",
            kapture.Descriptors: "a",
            kapture.GlobalFeatures: "r",
            kapture.Matches: "r",
        },
    ) as tar_handlers:
        kdata = kapture_from_dir(
            args.kapture_root,
            None,
            skip_list=[
                kapture.GlobalFeatures,
                kapture.Matches,
                kapture.Points3d,
                kapture.Observations,
            ],
            tar_handlers=tar_handlers,
        )

        assert kdata.records_camera is not None
        image_list = [
            filename for _, _, filename in kapture.flatten(kdata.records_camera)
        ]
        if args.keypoints_type is None:
            args.keypoints_type = path.splitext(path.basename(args.model))[0]
            print(f"keypoints_type set to {args.keypoints_type}")
        if args.descriptors_type is None:
            args.descriptors_type = path.splitext(path.basename(args.model))[0]
            print(f"descriptors_type set to {args.descriptors_type}")

        if (
            kdata.keypoints is not None
            and args.keypoints_type in kdata.keypoints
            and kdata.descriptors is not None
            and args.descriptors_type in kdata.descriptors
        ):
            print(
                "detected already computed features of same keypoints_type/descriptors_type, resuming extraction..."
            )
            image_list = [
                name
                for name in image_list
                if name not in kdata.keypoints[args.keypoints_type]
                or name not in kdata.descriptors[args.descriptors_type]
            ]

        if len(image_list) == 0:
            print("All features were already extracted")
            return
        else:
            print(f"Extracting r2d2 features for {len(image_list)} images")

        iscuda = common.torch_set_gpu(args.gpu)

        # load the network...
        net = load_network(args.model)
        if iscuda:
            net = net.cuda()

        # create the non-maxima detector
        detector = NonMaxSuppression(
            rel_thr=args.reliability_thr, rep_thr=args.repeatability_thr
        )

        if kdata.keypoints is None:
            kdata.keypoints = {}
        if kdata.descriptors is None:
            kdata.descriptors = {}

        if args.keypoints_type not in kdata.keypoints:
            keypoints_dtype = None
            keypoints_dsize = None
        else:
            keypoints_dtype = kdata.keypoints[args.keypoints_type].dtype
            keypoints_dsize = kdata.keypoints[args.keypoints_type].dsize
        if args.descriptors_type not in kdata.descriptors:
            descriptors_dtype = None
            descriptors_dsize = None
        else:
            descriptors_dtype = kdata.descriptors[args.descriptors_type].dtype
            descriptors_dsize = kdata.descriptors[args.descriptors_type].dsize

        for image_name in image_list:
            img_path = get_image_fullpath(args.kapture_root, image_name)
            print(f"\nExtracting features for {img_path}")
            img = Image.open(img_path).convert("RGB")
            W, H = img.size
            img = norm_RGB(img)[None]
            if iscuda:
                img = img.cuda()

            # extract keypoints/descriptors for a single image
            xys, desc, scores = extract_multiscale(
                net,
                img,
                detector,
                scale_f=args.scale_f,
                min_scale=args.min_scale,
                max_scale=args.max_scale,
                min_size=args.min_size,
                max_size=args.max_size,
                verbose=True,
            )

            xys = xys.cpu().numpy()
            desc = desc.cpu().numpy()
            scores = scores.cpu().numpy()
            idxs = scores.argsort()[-args.top_k or None :]

            xys = xys[idxs]
            desc = desc[idxs]
            if keypoints_dtype is None or descriptors_dtype is None:
                keypoints_dtype = xys.dtype
                descriptors_dtype = desc.dtype

                keypoints_dsize = xys.shape[1]
                descriptors_dsize = desc.shape[1]

                kdata.keypoints[args.keypoints_type] = kapture.Keypoints(
                    "r2d2", keypoints_dtype, keypoints_dsize
                )
                kdata.descriptors[args.descriptors_type] = kapture.Descriptors(
                    "r2d2",
                    descriptors_dtype,
                    descriptors_dsize,
                    args.keypoints_type,
                    "L2",
                )
                keypoints_config_absolute_path = get_feature_csv_fullpath(
                    kapture.Keypoints, args.keypoints_type, args.kapture_root
                )
                descriptors_config_absolute_path = get_feature_csv_fullpath(
                    kapture.Descriptors, args.descriptors_type, args.kapture_root
                )
                keypoints_to_file(
                    keypoints_config_absolute_path, kdata.keypoints[args.keypoints_type]
                )
                descriptors_to_file(
                    descriptors_config_absolute_path,
                    kdata.descriptors[args.descriptors_type],
                )
            else:
                assert kdata.keypoints[args.keypoints_type].dtype == xys.dtype
                assert kdata.descriptors[args.descriptors_type].dtype == desc.dtype
                assert kdata.keypoints[args.keypoints_type].dsize == xys.shape[1]
                assert kdata.descriptors[args.descriptors_type].dsize == desc.shape[1]
                assert (
                    kdata.descriptors[args.descriptors_type].keypoints_type
                    == args.keypoints_type
                )
                assert kdata.descriptors[args.descriptors_type].metric_type == "L2"

            keypoints_fullpath = get_keypoints_fullpath(
                args.keypoints_type, args.kapture_root, image_name, tar_handlers
            )
            print(f"Saving {xys.shape[0]} keypoints to {keypoints_fullpath}")
            image_keypoints_to_file(keypoints_fullpath, xys)
            kdata.keypoints[args.keypoints_type].add(image_name)

            descriptors_fullpath = get_descriptors_fullpath(
                args.descriptors_type, args.kapture_root, image_name, tar_handlers
            )
            print(f"Saving {desc.shape[0]} descriptors to {descriptors_fullpath}")
            image_descriptors_to_file(descriptors_fullpath, desc)
            kdata.descriptors[args.descriptors_type].add(image_name)

        if not keypoints_check_dir(
            kdata.keypoints[args.keypoints_type],
            args.keypoints_type,
            args.kapture_root,
            tar_handlers,
        ) or not descriptors_check_dir(
            kdata.descriptors[args.descriptors_type],
            args.descriptors_type,
            args.kapture_root,
            tar_handlers,
        ):
            print(
                "local feature extraction ended successfully but not all files were saved"
            )


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser(
        "Extract r2d2 local features for all images in a dataset stored in the kapture format"
    )
    parser.add_argument("--model", type=str, required=True, help="model path")
    parser.add_argument(
        "--keypoints-type",
        default=None,
        help="keypoint type_name, default is filename of model",
    )
    parser.add_argument(
        "--descriptors-type",
        default=None,
        help="descriptors type_name, default is filename of model",
    )

    parser.add_argument(
        "--kapture-root", type=str, required=True, help="path to kapture root directory"
    )

    parser.add_argument("--top-k", type=int, default=5000, help="number of keypoints")

    parser.add_argument("--scale-f", type=float, default=2**0.25)
    parser.add_argument("--min-size", type=int, default=256)
    parser.add_argument("--max-size", type=int, default=1024)
    parser.add_argument("--min-scale", type=float, default=0)
    parser.add_argument("--max-scale", type=float, default=1)

    parser.add_argument("--reliability-thr", type=float, default=0.7)
    parser.add_argument("--repeatability-thr", type=float, default=0.7)

    parser.add_argument(
        "--gpu", type=int, nargs="+", default=[0], help="use -1 for CPU"
    )
    args = parser.parse_args()

    extract_kapture_keypoints(args)