Spaces:
Running
Running
File size: 7,639 Bytes
4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import numpy as np
def norm_kpt(K, kp):
kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1)
kp = np.matmul(kp, np.linalg.inv(K).T)[:, :2]
return kp
def unnorm_kp(K, kp):
kp = np.concatenate([kp, np.ones([kp.shape[0], 1])], axis=1)
kp = np.matmul(kp, K.T)[:, :2]
return kp
def interpolate_depth(pos, depth):
# pos:[y,x]
ids = np.array(range(0, pos.shape[0]))
h, w = depth.shape
i = pos[:, 0]
j = pos[:, 1]
valid_corner = np.logical_and(
np.logical_and(i > 0, i < h - 1), np.logical_and(j > 0, j < w - 1)
)
i, j = i[valid_corner], j[valid_corner]
ids = ids[valid_corner]
i_top_left = np.floor(i).astype(np.int32)
j_top_left = np.floor(j).astype(np.int32)
i_top_right = np.floor(i).astype(np.int32)
j_top_right = np.ceil(j).astype(np.int32)
i_bottom_left = np.ceil(i).astype(np.int32)
j_bottom_left = np.floor(j).astype(np.int32)
i_bottom_right = np.ceil(i).astype(np.int32)
j_bottom_right = np.ceil(j).astype(np.int32)
# Valid depth
depth_top_left, depth_top_right, depth_down_left, depth_down_right = (
depth[i_top_left, j_top_left],
depth[i_top_right, j_top_right],
depth[i_bottom_left, j_bottom_left],
depth[i_bottom_right, j_bottom_right],
)
valid_depth = np.logical_and(
np.logical_and(depth_top_left > 0, depth_top_right > 0),
np.logical_and(depth_down_left > 0, depth_down_left > 0),
)
ids = ids[valid_depth]
depth_top_left, depth_top_right, depth_down_left, depth_down_right = (
depth_top_left[valid_depth],
depth_top_right[valid_depth],
depth_down_left[valid_depth],
depth_down_right[valid_depth],
)
i, j, i_top_left, j_top_left = (
i[valid_depth],
j[valid_depth],
i_top_left[valid_depth],
j_top_left[valid_depth],
)
# Interpolation
dist_i_top_left = i - i_top_left.astype(np.float32)
dist_j_top_left = j - j_top_left.astype(np.float32)
w_top_left = (1 - dist_i_top_left) * (1 - dist_j_top_left)
w_top_right = (1 - dist_i_top_left) * dist_j_top_left
w_bottom_left = dist_i_top_left * (1 - dist_j_top_left)
w_bottom_right = dist_i_top_left * dist_j_top_left
interpolated_depth = (
w_top_left * depth_top_left
+ w_top_right * depth_top_right
+ w_bottom_left * depth_down_left
+ w_bottom_right * depth_down_right
)
return [interpolated_depth, ids]
def reprojection(depth_map, kpt, dR, dt, K1_img2depth, K1, K2):
# warp kpt from img1 to img2
def swap_axis(data):
return np.stack([data[:, 1], data[:, 0]], axis=-1)
kp_depth = unnorm_kp(K1_img2depth, kpt)
uv_depth = swap_axis(kp_depth)
z, valid_idx = interpolate_depth(uv_depth, depth_map)
norm_kp = norm_kpt(K1, kpt)
norm_kp_valid = np.concatenate(
[norm_kp[valid_idx, :], np.ones((len(valid_idx), 1))], axis=-1
)
xyz_valid = norm_kp_valid * z.reshape(-1, 1)
xyz2 = np.matmul(xyz_valid, dR.T) + dt.reshape(1, 3)
xy2 = xyz2[:, :2] / xyz2[:, 2:]
kp2, valid = np.ones(kpt.shape) * 1e5, np.zeros(kpt.shape[0])
kp2[valid_idx] = unnorm_kp(K2, xy2)
valid[valid_idx] = 1
return kp2, valid.astype(bool)
def reprojection_2s(kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2):
# size:H*W
depth_size1, depth_size2 = [depth1.shape[0], depth1.shape[1]], [
depth2.shape[0],
depth2.shape[1],
]
scale_1 = [float(depth_size1[0]) / size1[0], float(depth_size1[1]) / size1[1], 1]
scale_2 = [float(depth_size2[0]) / size2[0], float(depth_size2[1]) / size2[1], 1]
K1_img2depth, K2_img2depth = np.diag(np.asarray(scale_1)), np.diag(
np.asarray(scale_2)
)
kp1_2_proj, valid1_2 = reprojection(depth1, kp1, dR, dt, K1_img2depth, K1, K2)
kp2_1_proj, valid2_1 = reprojection(
depth2, kp2, dR.T, -np.matmul(dR.T, dt), K2_img2depth, K2, K1
)
return [kp1_2_proj, kp2_1_proj], [valid1_2, valid2_1]
def make_corr(
kp1,
kp2,
desc1,
desc2,
depth1,
depth2,
K1,
K2,
dR,
dt,
size1,
size2,
corr_th,
incorr_th,
check_desc=False,
):
# make reprojection
[kp1_2, kp2_1], [valid1_2, valid2_1] = reprojection_2s(
kp1, kp2, depth1, depth2, K1, K2, dR, dt, size1, size2
)
num_pts1, num_pts2 = kp1.shape[0], kp2.shape[0]
# reprojection error
dis_mat1 = np.sqrt(
abs(
(kp1**2).sum(1, keepdims=True)
+ (kp2_1**2).sum(1, keepdims=False)[np.newaxis]
- 2 * np.matmul(kp1, kp2_1.T)
)
)
dis_mat2 = np.sqrt(
abs(
(kp2**2).sum(1, keepdims=True)
+ (kp1_2**2).sum(1, keepdims=False)[np.newaxis]
- 2 * np.matmul(kp2, kp1_2.T)
)
)
repro_error = np.maximum(dis_mat1, dis_mat2.T) # n1*n2
# find corr index
nn_sort1 = np.argmin(repro_error, axis=1)
nn_sort2 = np.argmin(repro_error, axis=0)
mask_mutual = nn_sort2[nn_sort1] == np.arange(kp1.shape[0])
mask_inlier = (
np.take_along_axis(
repro_error, indices=nn_sort1[:, np.newaxis], axis=-1
).squeeze(1)
< corr_th
)
mask = mask_mutual & mask_inlier
corr_index = np.stack(
[np.arange(num_pts1)[mask], np.arange(num_pts2)[nn_sort1[mask]]], axis=-1
)
if check_desc:
# filter kpt in same pos using desc distance(e.g. DoG kpt)
x1_valid, x2_valid = kp1[corr_index[:, 0]], kp2[corr_index[:, 1]]
mask_samepos1 = np.logical_and(
x1_valid[:, 0, np.newaxis] == kp1[np.newaxis, :, 0],
x1_valid[:, 1, np.newaxis] == kp1[np.newaxis, :, 1],
)
mask_samepos2 = np.logical_and(
x2_valid[:, 0, np.newaxis] == kp2[np.newaxis, :, 0],
x2_valid[:, 1, np.newaxis] == kp2[np.newaxis, :, 1],
)
duplicated_mask = np.logical_or(
mask_samepos1.sum(-1) > 1, mask_samepos2.sum(-1) > 1
)
duplicated_index = np.nonzero(duplicated_mask)[0]
unique_corr_index = corr_index[~duplicated_mask]
clean_duplicated_corr = []
for index in duplicated_index:
cur_desc1, cur_desc2 = (
desc1[mask_samepos1[index]],
desc2[mask_samepos2[index]],
)
cur_desc_mat = np.matmul(cur_desc1, cur_desc2.T)
cur_max_index = [
np.argmax(cur_desc_mat) // cur_desc_mat.shape[1],
np.argmax(cur_desc_mat) % cur_desc_mat.shape[1],
]
clean_duplicated_corr.append(
np.stack(
[
np.arange(num_pts1)[mask_samepos1[index]][cur_max_index[0]],
np.arange(num_pts2)[mask_samepos2[index]][cur_max_index[1]],
]
)
)
clean_corr_index = unique_corr_index
if len(clean_duplicated_corr) != 0:
clean_duplicated_corr = np.stack(clean_duplicated_corr, axis=0)
clean_corr_index = np.concatenate(
[clean_corr_index, clean_duplicated_corr], axis=0
)
else:
clean_corr_index = corr_index
# find incorr
mask_incorr1 = np.min(dis_mat2.T[valid1_2], axis=-1) > incorr_th
mask_incorr2 = np.min(dis_mat1.T[valid2_1], axis=-1) > incorr_th
incorr_index1, incorr_index2 = (
np.arange(num_pts1)[valid1_2][mask_incorr1.squeeze()],
np.arange(num_pts2)[valid2_1][mask_incorr2.squeeze()],
)
return clean_corr_index, incorr_index1, incorr_index2
|