File size: 6,167 Bytes
9cde3b4
 
 
b075789
 
 
 
 
 
 
 
 
 
 
 
 
9cde3b4
 
b075789
9cde3b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import warnings
import torch.nn as nn
import torch
from romatch.models.matcher import *
from romatch.models.transformer import Block, TransformerDecoder, MemEffAttention
from romatch.models.encoders import *
from romatch.models.tiny import TinyRoMa

def tiny_roma_v1_model(weights = None, freeze_xfeat=False, exact_softmax=False, xfeat = None):
    model = TinyRoMa(
        xfeat = xfeat,
        freeze_xfeat=freeze_xfeat, 
        exact_softmax=exact_softmax)
    if weights is not None:
        model.load_state_dict(weights)
    return model

def roma_model(resolution, upsample_preds, device = None, weights=None, dinov2_weights=None, amp_dtype: torch.dtype=torch.float16, **kwargs):
    # romatch weights and dinov2 weights are loaded seperately, as dinov2 weights are not parameters
    #torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul TODO: these probably ruin stuff, should be careful
    #torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
    warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
    gp_dim = 512
    feat_dim = 512
    decoder_dim = gp_dim + feat_dim
    cls_to_coord_res = 64
    coordinate_decoder = TransformerDecoder(
        nn.Sequential(*[Block(decoder_dim, 8, attn_class=MemEffAttention) for _ in range(5)]), 
        decoder_dim, 
        cls_to_coord_res**2 + 1,
        is_classifier=True,
        amp = True,
        pos_enc = False,)
    dw = True
    hidden_blocks = 8
    kernel_size = 5
    displacement_emb = "linear"
    disable_local_corr_grad = True
    
    conv_refiner = nn.ModuleDict(
        {
            "16": ConvRefiner(
                2 * 512+128+(2*7+1)**2,
                2 * 512+128+(2*7+1)**2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=128,
                local_corr_radius = 7,
                corr_in_other = True,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "8": ConvRefiner(
                2 * 512+64+(2*3+1)**2,
                2 * 512+64+(2*3+1)**2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=64,
                local_corr_radius = 3,
                corr_in_other = True,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "4": ConvRefiner(
                2 * 256+32+(2*2+1)**2,
                2 * 256+32+(2*2+1)**2,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=32,
                local_corr_radius = 2,
                corr_in_other = True,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "2": ConvRefiner(
                2 * 64+16,
                128+16,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=16,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
            "1": ConvRefiner(
                2 * 9 + 6,
                24,
                2 + 1,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks = hidden_blocks,
                displacement_emb = displacement_emb,
                displacement_emb_dim = 6,
                amp = True,
                disable_local_corr_grad = disable_local_corr_grad,
                bn_momentum = 0.01,
            ),
        }
    )
    kernel_temperature = 0.2
    learn_temperature = False
    no_cov = True
    kernel = CosKernel
    only_attention = False
    basis = "fourier"
    gp16 = GP(
        kernel,
        T=kernel_temperature,
        learn_temperature=learn_temperature,
        only_attention=only_attention,
        gp_dim=gp_dim,
        basis=basis,
        no_cov=no_cov,
    )
    gps = nn.ModuleDict({"16": gp16})
    proj16 = nn.Sequential(nn.Conv2d(1024, 512, 1, 1), nn.BatchNorm2d(512))
    proj8 = nn.Sequential(nn.Conv2d(512, 512, 1, 1), nn.BatchNorm2d(512))
    proj4 = nn.Sequential(nn.Conv2d(256, 256, 1, 1), nn.BatchNorm2d(256))
    proj2 = nn.Sequential(nn.Conv2d(128, 64, 1, 1), nn.BatchNorm2d(64))
    proj1 = nn.Sequential(nn.Conv2d(64, 9, 1, 1), nn.BatchNorm2d(9))
    proj = nn.ModuleDict({
        "16": proj16,
        "8": proj8,
        "4": proj4,
        "2": proj2,
        "1": proj1,
        })
    displacement_dropout_p = 0.0
    gm_warp_dropout_p = 0.0
    decoder = Decoder(coordinate_decoder, 
                      gps, 
                      proj, 
                      conv_refiner, 
                      detach=True, 
                      scales=["16", "8", "4", "2", "1"], 
                      displacement_dropout_p = displacement_dropout_p,
                      gm_warp_dropout_p = gm_warp_dropout_p)
    
    encoder = CNNandDinov2(
        cnn_kwargs = dict(
            pretrained=False,
            amp = True),
        amp = True,
        use_vgg = True,
        dinov2_weights = dinov2_weights,
        amp_dtype=amp_dtype,
    )
    h,w = resolution
    symmetric = True
    attenuate_cert = True
    sample_mode = "threshold_balanced"
    matcher = RegressionMatcher(encoder, decoder, h=h, w=w, upsample_preds=upsample_preds, 
                                symmetric = symmetric, attenuate_cert = attenuate_cert, sample_mode = sample_mode, **kwargs).to(device)
    matcher.load_state_dict(weights)
    return matcher