Spaces:
Running
Running
File size: 6,167 Bytes
9cde3b4 b075789 9cde3b4 b075789 9cde3b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import warnings
import torch.nn as nn
import torch
from romatch.models.matcher import *
from romatch.models.transformer import Block, TransformerDecoder, MemEffAttention
from romatch.models.encoders import *
from romatch.models.tiny import TinyRoMa
def tiny_roma_v1_model(weights = None, freeze_xfeat=False, exact_softmax=False, xfeat = None):
model = TinyRoMa(
xfeat = xfeat,
freeze_xfeat=freeze_xfeat,
exact_softmax=exact_softmax)
if weights is not None:
model.load_state_dict(weights)
return model
def roma_model(resolution, upsample_preds, device = None, weights=None, dinov2_weights=None, amp_dtype: torch.dtype=torch.float16, **kwargs):
# romatch weights and dinov2 weights are loaded seperately, as dinov2 weights are not parameters
#torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul TODO: these probably ruin stuff, should be careful
#torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated')
gp_dim = 512
feat_dim = 512
decoder_dim = gp_dim + feat_dim
cls_to_coord_res = 64
coordinate_decoder = TransformerDecoder(
nn.Sequential(*[Block(decoder_dim, 8, attn_class=MemEffAttention) for _ in range(5)]),
decoder_dim,
cls_to_coord_res**2 + 1,
is_classifier=True,
amp = True,
pos_enc = False,)
dw = True
hidden_blocks = 8
kernel_size = 5
displacement_emb = "linear"
disable_local_corr_grad = True
conv_refiner = nn.ModuleDict(
{
"16": ConvRefiner(
2 * 512+128+(2*7+1)**2,
2 * 512+128+(2*7+1)**2,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=128,
local_corr_radius = 7,
corr_in_other = True,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"8": ConvRefiner(
2 * 512+64+(2*3+1)**2,
2 * 512+64+(2*3+1)**2,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=64,
local_corr_radius = 3,
corr_in_other = True,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"4": ConvRefiner(
2 * 256+32+(2*2+1)**2,
2 * 256+32+(2*2+1)**2,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=32,
local_corr_radius = 2,
corr_in_other = True,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"2": ConvRefiner(
2 * 64+16,
128+16,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks=hidden_blocks,
displacement_emb=displacement_emb,
displacement_emb_dim=16,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
"1": ConvRefiner(
2 * 9 + 6,
24,
2 + 1,
kernel_size=kernel_size,
dw=dw,
hidden_blocks = hidden_blocks,
displacement_emb = displacement_emb,
displacement_emb_dim = 6,
amp = True,
disable_local_corr_grad = disable_local_corr_grad,
bn_momentum = 0.01,
),
}
)
kernel_temperature = 0.2
learn_temperature = False
no_cov = True
kernel = CosKernel
only_attention = False
basis = "fourier"
gp16 = GP(
kernel,
T=kernel_temperature,
learn_temperature=learn_temperature,
only_attention=only_attention,
gp_dim=gp_dim,
basis=basis,
no_cov=no_cov,
)
gps = nn.ModuleDict({"16": gp16})
proj16 = nn.Sequential(nn.Conv2d(1024, 512, 1, 1), nn.BatchNorm2d(512))
proj8 = nn.Sequential(nn.Conv2d(512, 512, 1, 1), nn.BatchNorm2d(512))
proj4 = nn.Sequential(nn.Conv2d(256, 256, 1, 1), nn.BatchNorm2d(256))
proj2 = nn.Sequential(nn.Conv2d(128, 64, 1, 1), nn.BatchNorm2d(64))
proj1 = nn.Sequential(nn.Conv2d(64, 9, 1, 1), nn.BatchNorm2d(9))
proj = nn.ModuleDict({
"16": proj16,
"8": proj8,
"4": proj4,
"2": proj2,
"1": proj1,
})
displacement_dropout_p = 0.0
gm_warp_dropout_p = 0.0
decoder = Decoder(coordinate_decoder,
gps,
proj,
conv_refiner,
detach=True,
scales=["16", "8", "4", "2", "1"],
displacement_dropout_p = displacement_dropout_p,
gm_warp_dropout_p = gm_warp_dropout_p)
encoder = CNNandDinov2(
cnn_kwargs = dict(
pretrained=False,
amp = True),
amp = True,
use_vgg = True,
dinov2_weights = dinov2_weights,
amp_dtype=amp_dtype,
)
h,w = resolution
symmetric = True
attenuate_cert = True
sample_mode = "threshold_balanced"
matcher = RegressionMatcher(encoder, decoder, h=h, w=w, upsample_preds=upsample_preds,
symmetric = symmetric, attenuate_cert = attenuate_cert, sample_mode = sample_mode, **kwargs).to(device)
matcher.load_state_dict(weights)
return matcher
|