File size: 1,804 Bytes
10b4a5f
 
 
 
 
358ab8f
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
358ab8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import numpy as np
import h5py
import cv2


class standard_reader:
    def __init__(self, config):
        self.raw_dir = config["rawdata_dir"]
        self.dataset = h5py.File(config["dataset_dir"], "r")
        self.num_kpt = config["num_kpt"]

    def run(self, index):
        K1, K2 = np.asarray(self.dataset["K1"][str(index)]), np.asarray(
            self.dataset["K2"][str(index)]
        )
        R = np.asarray(self.dataset["R"][str(index)])
        t = np.asarray(self.dataset["T"][str(index)])
        t = t / np.sqrt((t**2).sum())

        desc1, desc2 = (
            self.dataset["desc1"][str(index)][()][: self.num_kpt],
            self.dataset["desc2"][str(index)][()][: self.num_kpt],
        )
        x1, x2 = (
            self.dataset["kpt1"][str(index)][()][: self.num_kpt],
            self.dataset["kpt2"][str(index)][()][: self.num_kpt],
        )
        e, f = self.dataset["e"][str(index)][()], self.dataset["f"][str(index)][()]

        img1_path, img2_path = (
            self.dataset["img_path1"][str(index)][()][0].decode(),
            self.dataset["img_path2"][str(index)][()][0].decode(),
        )
        img1, img2 = cv2.imread(os.path.join(self.raw_dir, img1_path)), cv2.imread(
            os.path.join(self.raw_dir, img2_path)
        )

        info = {
            "index": index,
            "K1": K1,
            "K2": K2,
            "R": R,
            "t": t,
            "x1": x1,
            "x2": x2,
            "desc1": desc1,
            "desc2": desc2,
            "img1": img1,
            "img2": img2,
            "e": e,
            "f": f,
            "r_gt": R,
            "t_gt": t,
        }
        return info

    def close(self):
        self.dataset.close()

    def __len__(self):
        return len(self.dataset["K1"])