File size: 8,650 Bytes
10b4a5f
 
 
 
 
 
 
358ab8f
 
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
358ab8f
 
10b4a5f
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
 
358ab8f
 
10b4a5f
 
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
10b4a5f
 
358ab8f
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
 
 
10b4a5f
 
358ab8f
10b4a5f
358ab8f
 
 
 
10b4a5f
358ab8f
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
10b4a5f
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
 
10b4a5f
 
 
358ab8f
 
 
 
 
 
10b4a5f
358ab8f
 
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
10b4a5f
358ab8f
 
10b4a5f
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
358ab8f
 
10b4a5f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
import torch.optim as optim
from tqdm import trange
import os
from tensorboardX import SummaryWriter
import numpy as np
import cv2
from loss import SGMLoss, SGLoss
from valid import valid, dump_train_vis

import sys

ROOT_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.insert(0, ROOT_DIR)


from utils import train_utils


def train_step(optimizer, model, match_loss, data, step, pre_avg_loss):
    data["step"] = step
    result = model(data, test_mode=False)
    loss_res = match_loss.run(data, result)

    optimizer.zero_grad()
    loss_res["total_loss"].backward()
    # apply reduce on all record tensor
    for key in loss_res.keys():
        loss_res[key] = train_utils.reduce_tensor(loss_res[key], "mean")

    if loss_res["total_loss"] < 7 * pre_avg_loss or step < 200 or pre_avg_loss == 0:
        optimizer.step()
        unusual_loss = False
    else:
        optimizer.zero_grad()
        unusual_loss = True
    return loss_res, unusual_loss


def train(model, train_loader, valid_loader, config, model_config):
    model.train()
    optimizer = optim.Adam(model.parameters(), lr=config.train_lr)

    if config.model_name == "SGM":
        match_loss = SGMLoss(config, model_config)
    elif config.model_name == "SG":
        match_loss = SGLoss(config, model_config)
    else:
        raise NotImplementedError

    checkpoint_path = os.path.join(config.log_base, "checkpoint.pth")
    config.resume = os.path.isfile(checkpoint_path)
    if config.resume:
        if config.local_rank == 0:
            print("==> Resuming from checkpoint..")
        checkpoint = torch.load(
            checkpoint_path, map_location="cuda:{}".format(config.local_rank)
        )
        model.load_state_dict(checkpoint["state_dict"])
        best_acc = checkpoint["best_acc"]
        start_step = checkpoint["step"]
        optimizer.load_state_dict(checkpoint["optimizer"])
    else:
        best_acc = -1
        start_step = 0
    train_loader_iter = iter(train_loader)

    if config.local_rank == 0:
        writer = SummaryWriter(os.path.join(config.log_base, "log_file"))

    train_loader.sampler.set_epoch(
        start_step * config.train_batch_size // len(train_loader.dataset)
    )
    pre_avg_loss = 0

    progress_bar = (
        trange(start_step, config.train_iter, ncols=config.tqdm_width)
        if config.local_rank == 0
        else range(start_step, config.train_iter)
    )
    for step in progress_bar:
        try:
            train_data = next(train_loader_iter)
        except StopIteration:
            if config.local_rank == 0:
                print(
                    "epoch: ",
                    step * config.train_batch_size // len(train_loader.dataset),
                )
            train_loader.sampler.set_epoch(
                step * config.train_batch_size // len(train_loader.dataset)
            )
            train_loader_iter = iter(train_loader)
            train_data = next(train_loader_iter)

        train_data = train_utils.tocuda(train_data)
        lr = min(
            config.train_lr * config.decay_rate ** (step - config.decay_iter),
            config.train_lr,
        )
        for param_group in optimizer.param_groups:
            param_group["lr"] = lr

        # run training
        loss_res, unusual_loss = train_step(
            optimizer, model, match_loss, train_data, step - start_step, pre_avg_loss
        )
        if (step - start_step) <= 200:
            pre_avg_loss = loss_res["total_loss"].data
        if (step - start_step) > 200 and not unusual_loss:
            pre_avg_loss = pre_avg_loss.data * 0.9 + loss_res["total_loss"].data * 0.1
        if unusual_loss and config.local_rank == 0:
            print(
                "unusual loss! pre_avg_loss: ",
                pre_avg_loss,
                "cur_loss: ",
                loss_res["total_loss"].data,
            )
        # log
        if config.local_rank == 0 and step % config.log_intv == 0 and not unusual_loss:
            writer.add_scalar("TotalLoss", loss_res["total_loss"], step)
            writer.add_scalar("CorrLoss", loss_res["loss_corr"], step)
            writer.add_scalar("InCorrLoss", loss_res["loss_incorr"], step)
            writer.add_scalar("dustbin", model.module.dustbin, step)

            if config.model_name == "SGM":
                writer.add_scalar("SeedConfLoss", loss_res["loss_seed_conf"], step)
                writer.add_scalar("MidCorrLoss", loss_res["loss_corr_mid"].sum(), step)
                writer.add_scalar(
                    "MidInCorrLoss", loss_res["loss_incorr_mid"].sum(), step
                )

        # valid ans save
        b_save = ((step + 1) % config.save_intv) == 0
        b_validate = ((step + 1) % config.val_intv) == 0
        if b_validate:
            (
                total_loss,
                acc_corr,
                acc_incorr,
                seed_precision_tower,
                seed_recall_tower,
                acc_mid,
            ) = valid(valid_loader, model, match_loss, config, model_config)
            if config.local_rank == 0:
                writer.add_scalar("ValidAcc", acc_corr, step)
                writer.add_scalar("ValidLoss", total_loss, step)

                if config.model_name == "SGM":
                    for i in range(len(seed_recall_tower)):
                        writer.add_scalar(
                            "seed_conf_pre_%d" % i, seed_precision_tower[i], step
                        )
                        writer.add_scalar(
                            "seed_conf_recall_%d" % i, seed_precision_tower[i], step
                        )
                    for i in range(len(acc_mid)):
                        writer.add_scalar("acc_mid%d" % i, acc_mid[i], step)
                    print(
                        "acc_corr: ",
                        acc_corr.data,
                        "acc_incorr: ",
                        acc_incorr.data,
                        "seed_conf_pre: ",
                        seed_precision_tower.mean().data,
                        "seed_conf_recall: ",
                        seed_recall_tower.mean().data,
                        "acc_mid: ",
                        acc_mid.mean().data,
                    )
                else:
                    print("acc_corr: ", acc_corr.data, "acc_incorr: ", acc_incorr.data)

                # saving best
                if acc_corr > best_acc:
                    print("Saving best model with va_res = {}".format(acc_corr))
                    best_acc = acc_corr
                    save_dict = {
                        "step": step + 1,
                        "state_dict": model.state_dict(),
                        "best_acc": best_acc,
                        "optimizer": optimizer.state_dict(),
                    }
                    save_dict.update(save_dict)
                    torch.save(
                        save_dict, os.path.join(config.log_base, "model_best.pth")
                    )

        if b_save:
            if config.local_rank == 0:
                save_dict = {
                    "step": step + 1,
                    "state_dict": model.state_dict(),
                    "best_acc": best_acc,
                    "optimizer": optimizer.state_dict(),
                }
                torch.save(save_dict, checkpoint_path)

            # draw match results
            model.eval()
            with torch.no_grad():
                if config.local_rank == 0:
                    if not os.path.exists(
                        os.path.join(config.train_vis_folder, "train_vis")
                    ):
                        os.mkdir(os.path.join(config.train_vis_folder, "train_vis"))
                    if not os.path.exists(
                        os.path.join(
                            config.train_vis_folder, "train_vis", config.log_base
                        )
                    ):
                        os.mkdir(
                            os.path.join(
                                config.train_vis_folder, "train_vis", config.log_base
                            )
                        )
                    os.mkdir(
                        os.path.join(
                            config.train_vis_folder,
                            "train_vis",
                            config.log_base,
                            str(step),
                        )
                    )
                res = model(train_data)
                dump_train_vis(res, train_data, step, config)
            model.train()

    if config.local_rank == 0:
        writer.close()