File size: 9,020 Bytes
8c0ddef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import h5py

import numpy as np

from PIL import Image

import os

import torch
from torch.utils.data import Dataset

import time

from tqdm import tqdm

from lib.utils import preprocess_image


class MegaDepthDataset(Dataset):
    def __init__(
            self,
            scene_list_path='megadepth_utils/train_scenes.txt',
            scene_info_path='/local/dataset/megadepth/scene_info',
            base_path='/local/dataset/megadepth',
            train=True,
            preprocessing=None,
            min_overlap_ratio=.5,
            max_overlap_ratio=1,
            max_scale_ratio=np.inf,
            pairs_per_scene=100,
            image_size=256
    ):
        self.scenes = []
        with open(scene_list_path, 'r') as f:
            lines = f.readlines()
            for line in lines:
                self.scenes.append(line.strip('\n'))

        self.scene_info_path = scene_info_path
        self.base_path = base_path

        self.train = train

        self.preprocessing = preprocessing

        self.min_overlap_ratio = min_overlap_ratio
        self.max_overlap_ratio = max_overlap_ratio
        self.max_scale_ratio = max_scale_ratio

        self.pairs_per_scene = pairs_per_scene

        self.image_size = image_size

        self.dataset = []

    def build_dataset(self):
        self.dataset = []
        if not self.train:
            np_random_state = np.random.get_state()
            np.random.seed(42)
            print('Building the validation dataset...')
        else:
            print('Building a new training dataset...')
        for scene in tqdm(self.scenes, total=len(self.scenes)):
            scene_info_path = os.path.join(
                self.scene_info_path, '%s.npz' % scene
            )
            if not os.path.exists(scene_info_path):
                continue
            scene_info = np.load(scene_info_path, allow_pickle=True)
            overlap_matrix = scene_info['overlap_matrix']
            scale_ratio_matrix = scene_info['scale_ratio_matrix']

            valid =  np.logical_and(
                np.logical_and(
                    overlap_matrix >= self.min_overlap_ratio,
                    overlap_matrix <= self.max_overlap_ratio
                ),
                scale_ratio_matrix <= self.max_scale_ratio
            )
            
            pairs = np.vstack(np.where(valid))
            try:
                selected_ids = np.random.choice(
                    pairs.shape[1], self.pairs_per_scene
                )
            except:
                continue
            
            image_paths = scene_info['image_paths']
            depth_paths = scene_info['depth_paths']
            points3D_id_to_2D = scene_info['points3D_id_to_2D']
            points3D_id_to_ndepth = scene_info['points3D_id_to_ndepth']
            intrinsics = scene_info['intrinsics']
            poses = scene_info['poses']
            
            for pair_idx in selected_ids:
                idx1 = pairs[0, pair_idx]
                idx2 = pairs[1, pair_idx]
                matches = np.array(list(
                    points3D_id_to_2D[idx1].keys() &
                    points3D_id_to_2D[idx2].keys()
                ))

                # Scale filtering
                matches_nd1 = np.array([points3D_id_to_ndepth[idx1][match] for match in matches])
                matches_nd2 = np.array([points3D_id_to_ndepth[idx2][match] for match in matches])
                scale_ratio = np.maximum(matches_nd1 / matches_nd2, matches_nd2 / matches_nd1)
                matches = matches[np.where(scale_ratio <= self.max_scale_ratio)[0]]
                
                point3D_id = np.random.choice(matches)
                point2D1 = points3D_id_to_2D[idx1][point3D_id]
                point2D2 = points3D_id_to_2D[idx2][point3D_id]
                nd1 = points3D_id_to_ndepth[idx1][point3D_id]
                nd2 = points3D_id_to_ndepth[idx2][point3D_id]
                central_match = np.array([
                    point2D1[1], point2D1[0],
                    point2D2[1], point2D2[0]
                ])
                self.dataset.append({
                    'image_path1': image_paths[idx1],
                    'depth_path1': depth_paths[idx1],
                    'intrinsics1': intrinsics[idx1],
                    'pose1': poses[idx1],
                    'image_path2': image_paths[idx2],
                    'depth_path2': depth_paths[idx2],
                    'intrinsics2': intrinsics[idx2],
                    'pose2': poses[idx2],
                    'central_match': central_match,
                    'scale_ratio': max(nd1 / nd2, nd2 / nd1)
                })
        np.random.shuffle(self.dataset)
        if not self.train:
            np.random.set_state(np_random_state)

    def __len__(self):
        return len(self.dataset)

    def recover_pair(self, pair_metadata):
        depth_path1 = os.path.join(
            self.base_path, pair_metadata['depth_path1']
        )
        with h5py.File(depth_path1, 'r') as hdf5_file:
            depth1 = np.array(hdf5_file['/depth'])
        assert(np.min(depth1) >= 0)
        image_path1 = os.path.join(
            self.base_path, pair_metadata['image_path1']
        )
        image1 = Image.open(image_path1)
        if image1.mode != 'RGB':
            image1 = image1.convert('RGB')
        image1 = np.array(image1)
        assert(image1.shape[0] == depth1.shape[0] and image1.shape[1] == depth1.shape[1])
        intrinsics1 = pair_metadata['intrinsics1']
        pose1 = pair_metadata['pose1']

        depth_path2 = os.path.join(
            self.base_path, pair_metadata['depth_path2']
        )
        with h5py.File(depth_path2, 'r') as hdf5_file:
            depth2 = np.array(hdf5_file['/depth'])
        assert(np.min(depth2) >= 0)
        image_path2 = os.path.join(
            self.base_path, pair_metadata['image_path2']
        )
        image2 = Image.open(image_path2)
        if image2.mode != 'RGB':
            image2 = image2.convert('RGB')
        image2 = np.array(image2)
        assert(image2.shape[0] == depth2.shape[0] and image2.shape[1] == depth2.shape[1])
        intrinsics2 = pair_metadata['intrinsics2']
        pose2 = pair_metadata['pose2']

        central_match = pair_metadata['central_match']
        image1, bbox1, image2, bbox2 = self.crop(image1, image2, central_match)

        depth1 = depth1[
            bbox1[0] : bbox1[0] + self.image_size,
            bbox1[1] : bbox1[1] + self.image_size
        ]
        depth2 = depth2[
            bbox2[0] : bbox2[0] + self.image_size,
            bbox2[1] : bbox2[1] + self.image_size
        ]

        return (
            image1, depth1, intrinsics1, pose1, bbox1,
            image2, depth2, intrinsics2, pose2, bbox2
        )

    def crop(self, image1, image2, central_match):
        bbox1_i = max(int(central_match[0]) - self.image_size // 2, 0)
        if bbox1_i + self.image_size >= image1.shape[0]:
            bbox1_i = image1.shape[0] - self.image_size
        bbox1_j = max(int(central_match[1]) - self.image_size // 2, 0)
        if bbox1_j + self.image_size >= image1.shape[1]:
            bbox1_j = image1.shape[1] - self.image_size

        bbox2_i = max(int(central_match[2]) - self.image_size // 2, 0)
        if bbox2_i + self.image_size >= image2.shape[0]:
            bbox2_i = image2.shape[0] - self.image_size
        bbox2_j = max(int(central_match[3]) - self.image_size // 2, 0)
        if bbox2_j + self.image_size >= image2.shape[1]:
            bbox2_j = image2.shape[1] - self.image_size

        return (
            image1[
                bbox1_i : bbox1_i + self.image_size,
                bbox1_j : bbox1_j + self.image_size
            ],
            np.array([bbox1_i, bbox1_j]),
            image2[
                bbox2_i : bbox2_i + self.image_size,
                bbox2_j : bbox2_j + self.image_size
            ],
            np.array([bbox2_i, bbox2_j])
        )

    def __getitem__(self, idx):
        (
            image1, depth1, intrinsics1, pose1, bbox1,
            image2, depth2, intrinsics2, pose2, bbox2
        ) = self.recover_pair(self.dataset[idx])

        image1 = preprocess_image(image1, preprocessing=self.preprocessing)
        image2 = preprocess_image(image2, preprocessing=self.preprocessing)

        return {
            'image1': torch.from_numpy(image1.astype(np.float32)),
            'depth1': torch.from_numpy(depth1.astype(np.float32)),
            'intrinsics1': torch.from_numpy(intrinsics1.astype(np.float32)),
            'pose1': torch.from_numpy(pose1.astype(np.float32)),
            'bbox1': torch.from_numpy(bbox1.astype(np.float32)),
            'image2': torch.from_numpy(image2.astype(np.float32)),
            'depth2': torch.from_numpy(depth2.astype(np.float32)),
            'intrinsics2': torch.from_numpy(intrinsics2.astype(np.float32)),
            'pose2': torch.from_numpy(pose2.astype(np.float32)),
            'bbox2': torch.from_numpy(bbox2.astype(np.float32))
        }