Spaces:
Running
Running
File size: 6,459 Bytes
437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import logging
import os
import cv2
import torch
from copy import deepcopy
import torch.nn.functional as F
from torchvision.transforms import ToTensor
import math
from alnet import ALNet
from soft_detect import DKD
import time
configs = {
"alike-t": {
"c1": 8,
"c2": 16,
"c3": 32,
"c4": 64,
"dim": 64,
"single_head": True,
"radius": 2,
"model_path": os.path.join(os.path.split(__file__)[0], "models", "alike-t.pth"),
},
"alike-s": {
"c1": 8,
"c2": 16,
"c3": 48,
"c4": 96,
"dim": 96,
"single_head": True,
"radius": 2,
"model_path": os.path.join(os.path.split(__file__)[0], "models", "alike-s.pth"),
},
"alike-n": {
"c1": 16,
"c2": 32,
"c3": 64,
"c4": 128,
"dim": 128,
"single_head": True,
"radius": 2,
"model_path": os.path.join(os.path.split(__file__)[0], "models", "alike-n.pth"),
},
"alike-l": {
"c1": 32,
"c2": 64,
"c3": 128,
"c4": 128,
"dim": 128,
"single_head": False,
"radius": 2,
"model_path": os.path.join(os.path.split(__file__)[0], "models", "alike-l.pth"),
},
}
class ALike(ALNet):
def __init__(
self,
# ================================== feature encoder
c1: int = 32,
c2: int = 64,
c3: int = 128,
c4: int = 128,
dim: int = 128,
single_head: bool = False,
# ================================== detect parameters
radius: int = 2,
top_k: int = 500,
scores_th: float = 0.5,
n_limit: int = 5000,
device: str = "cpu",
model_path: str = "",
):
super().__init__(c1, c2, c3, c4, dim, single_head)
self.radius = radius
self.top_k = top_k
self.n_limit = n_limit
self.scores_th = scores_th
self.dkd = DKD(
radius=self.radius,
top_k=self.top_k,
scores_th=self.scores_th,
n_limit=self.n_limit,
)
self.device = device
if model_path != "":
state_dict = torch.load(model_path, self.device)
self.load_state_dict(state_dict)
self.to(self.device)
self.eval()
logging.info(f"Loaded model parameters from {model_path}")
logging.info(
f"Number of model parameters: {sum(p.numel() for p in self.parameters() if p.requires_grad) / 1e3}KB"
)
def extract_dense_map(self, image, ret_dict=False):
# ====================================================
# check image size, should be integer multiples of 2^5
# if it is not a integer multiples of 2^5, padding zeros
device = image.device
b, c, h, w = image.shape
h_ = math.ceil(h / 32) * 32 if h % 32 != 0 else h
w_ = math.ceil(w / 32) * 32 if w % 32 != 0 else w
if h_ != h:
h_padding = torch.zeros(b, c, h_ - h, w, device=device)
image = torch.cat([image, h_padding], dim=2)
if w_ != w:
w_padding = torch.zeros(b, c, h_, w_ - w, device=device)
image = torch.cat([image, w_padding], dim=3)
# ====================================================
scores_map, descriptor_map = super().forward(image)
# ====================================================
if h_ != h or w_ != w:
descriptor_map = descriptor_map[:, :, :h, :w]
scores_map = scores_map[:, :, :h, :w] # Bx1xHxW
# ====================================================
# BxCxHxW
descriptor_map = torch.nn.functional.normalize(descriptor_map, p=2, dim=1)
if ret_dict:
return {
"descriptor_map": descriptor_map,
"scores_map": scores_map,
}
else:
return descriptor_map, scores_map
def forward(self, img, image_size_max=99999, sort=False, sub_pixel=False):
"""
:param img: np.array HxWx3, RGB
:param image_size_max: maximum image size, otherwise, the image will be resized
:param sort: sort keypoints by scores
:param sub_pixel: whether to use sub-pixel accuracy
:return: a dictionary with 'keypoints', 'descriptors', 'scores', and 'time'
"""
H, W, three = img.shape
assert three == 3, "input image shape should be [HxWx3]"
# ==================== image size constraint
image = deepcopy(img)
max_hw = max(H, W)
if max_hw > image_size_max:
ratio = float(image_size_max / max_hw)
image = cv2.resize(image, dsize=None, fx=ratio, fy=ratio)
# ==================== convert image to tensor
image = (
torch.from_numpy(image)
.to(self.device)
.to(torch.float32)
.permute(2, 0, 1)[None]
/ 255.0
)
# ==================== extract keypoints
start = time.time()
with torch.no_grad():
descriptor_map, scores_map = self.extract_dense_map(image)
keypoints, descriptors, scores, _ = self.dkd(
scores_map, descriptor_map, sub_pixel=sub_pixel
)
keypoints, descriptors, scores = keypoints[0], descriptors[0], scores[0]
keypoints = (keypoints + 1) / 2 * keypoints.new_tensor([[W - 1, H - 1]])
if sort:
indices = torch.argsort(scores, descending=True)
keypoints = keypoints[indices]
descriptors = descriptors[indices]
scores = scores[indices]
end = time.time()
return {
"keypoints": keypoints.cpu().numpy(),
"descriptors": descriptors.cpu().numpy(),
"scores": scores.cpu().numpy(),
"scores_map": scores_map.cpu().numpy(),
"time": end - start,
}
if __name__ == "__main__":
import numpy as np
from thop import profile
net = ALike(c1=32, c2=64, c3=128, c4=128, dim=128, single_head=False)
image = np.random.random((640, 480, 3)).astype(np.float32)
flops, params = profile(net, inputs=(image, 9999, False), verbose=False)
print("{:<30} {:<8} GFLops".format("Computational complexity: ", flops / 1e9))
print("{:<30} {:<8} KB".format("Number of parameters: ", params / 1e3))
|