File size: 6,444 Bytes
10b4a5f
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
358ab8f
 
 
 
 
 
 
 
 
 
 
 
10b4a5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
from torch import nn
from torchvision.models import resnet
from typing import Optional, Callable


class ConvBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        gate: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ):
        super().__init__()
        if gate is None:
            self.gate = nn.ReLU(inplace=True)
        else:
            self.gate = gate
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self.conv1 = resnet.conv3x3(in_channels, out_channels)
        self.bn1 = norm_layer(out_channels)
        self.conv2 = resnet.conv3x3(out_channels, out_channels)
        self.bn2 = norm_layer(out_channels)

    def forward(self, x):
        x = self.gate(self.bn1(self.conv1(x)))  # B x in_channels x H x W
        x = self.gate(self.bn2(self.conv2(x)))  # B x out_channels x H x W
        return x


# copied from torchvision\models\resnet.py#27->BasicBlock
class ResBlock(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        gate: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ) -> None:
        super(ResBlock, self).__init__()
        if gate is None:
            self.gate = nn.ReLU(inplace=True)
        else:
            self.gate = gate
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("ResBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in ResBlock")
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
        self.conv1 = resnet.conv3x3(inplanes, planes, stride)
        self.bn1 = norm_layer(planes)
        self.conv2 = resnet.conv3x3(planes, planes)
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.gate(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.gate(out)

        return out


class ALNet(nn.Module):
    def __init__(
        self,
        c1: int = 32,
        c2: int = 64,
        c3: int = 128,
        c4: int = 128,
        dim: int = 128,
        single_head: bool = True,
    ):
        super().__init__()

        self.gate = nn.ReLU(inplace=True)

        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.pool4 = nn.MaxPool2d(kernel_size=4, stride=4)

        self.block1 = ConvBlock(3, c1, self.gate, nn.BatchNorm2d)

        self.block2 = ResBlock(
            inplanes=c1,
            planes=c2,
            stride=1,
            downsample=nn.Conv2d(c1, c2, 1),
            gate=self.gate,
            norm_layer=nn.BatchNorm2d,
        )
        self.block3 = ResBlock(
            inplanes=c2,
            planes=c3,
            stride=1,
            downsample=nn.Conv2d(c2, c3, 1),
            gate=self.gate,
            norm_layer=nn.BatchNorm2d,
        )
        self.block4 = ResBlock(
            inplanes=c3,
            planes=c4,
            stride=1,
            downsample=nn.Conv2d(c3, c4, 1),
            gate=self.gate,
            norm_layer=nn.BatchNorm2d,
        )

        # ================================== feature aggregation
        self.conv1 = resnet.conv1x1(c1, dim // 4)
        self.conv2 = resnet.conv1x1(c2, dim // 4)
        self.conv3 = resnet.conv1x1(c3, dim // 4)
        self.conv4 = resnet.conv1x1(dim, dim // 4)
        self.upsample2 = nn.Upsample(
            scale_factor=2, mode="bilinear", align_corners=True
        )
        self.upsample4 = nn.Upsample(
            scale_factor=4, mode="bilinear", align_corners=True
        )
        self.upsample8 = nn.Upsample(
            scale_factor=8, mode="bilinear", align_corners=True
        )
        self.upsample32 = nn.Upsample(
            scale_factor=32, mode="bilinear", align_corners=True
        )

        # ================================== detector and descriptor head
        self.single_head = single_head
        if not self.single_head:
            self.convhead1 = resnet.conv1x1(dim, dim)
        self.convhead2 = resnet.conv1x1(dim, dim + 1)

    def forward(self, image):
        # ================================== feature encoder
        x1 = self.block1(image)  # B x c1 x H x W
        x2 = self.pool2(x1)
        x2 = self.block2(x2)  # B x c2 x H/2 x W/2
        x3 = self.pool4(x2)
        x3 = self.block3(x3)  # B x c3 x H/8 x W/8
        x4 = self.pool4(x3)
        x4 = self.block4(x4)  # B x dim x H/32 x W/32

        # ================================== feature aggregation
        x1 = self.gate(self.conv1(x1))  # B x dim//4 x H x W
        x2 = self.gate(self.conv2(x2))  # B x dim//4 x H//2 x W//2
        x3 = self.gate(self.conv3(x3))  # B x dim//4 x H//8 x W//8
        x4 = self.gate(self.conv4(x4))  # B x dim//4 x H//32 x W//32
        x2_up = self.upsample2(x2)  # B x dim//4 x H x W
        x3_up = self.upsample8(x3)  # B x dim//4 x H x W
        x4_up = self.upsample32(x4)  # B x dim//4 x H x W
        x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1)

        # ================================== detector and descriptor head
        if not self.single_head:
            x1234 = self.gate(self.convhead1(x1234))
        x = self.convhead2(x1234)  # B x dim+1 x H x W

        descriptor_map = x[:, :-1, :, :]
        scores_map = torch.sigmoid(x[:, -1, :, :]).unsqueeze(1)

        return scores_map, descriptor_map


if __name__ == "__main__":
    from thop import profile

    net = ALNet(c1=16, c2=32, c3=64, c4=128, dim=128, single_head=True)

    image = torch.randn(1, 3, 640, 480)
    flops, params = profile(net, inputs=(image,), verbose=False)
    print("{:<30}  {:<8} GFLops".format("Computational complexity: ", flops / 1e9))
    print("{:<30}  {:<8} KB".format("Number of parameters: ", params / 1e3))