Spaces:
Running
Running
File size: 9,092 Bytes
10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f 358ab8f 10b4a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
import torch
import cv2
import numpy as np
from collections import OrderedDict
from loguru import logger
from kornia.geometry.epipolar import numeric
from kornia.geometry.conversions import convert_points_to_homogeneous
# --- METRICS ---
def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0):
# angle error between 2 vectors
t_gt = T_0to1[:3, 3]
n = np.linalg.norm(t) * np.linalg.norm(t_gt)
t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0)))
t_err = np.minimum(t_err, 180 - t_err) # handle E ambiguity
if np.linalg.norm(t_gt) < ignore_gt_t_thr: # pure rotation is challenging
t_err = 0
# angle error between 2 rotation matrices
R_gt = T_0to1[:3, :3]
cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2
cos = np.clip(cos, -1.0, 1.0) # handle numercial errors
R_err = np.rad2deg(np.abs(np.arccos(cos)))
return t_err, R_err
def symmetric_epipolar_distance(pts0, pts1, E, K0, K1):
"""Squared symmetric epipolar distance.
This can be seen as a biased estimation of the reprojection error.
Args:
pts0 (torch.Tensor): [N, 2]
E (torch.Tensor): [3, 3]
"""
pts0 = (pts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
pts1 = (pts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
pts0 = convert_points_to_homogeneous(pts0)
pts1 = convert_points_to_homogeneous(pts1)
Ep0 = pts0 @ E.T # [N, 3]
p1Ep0 = torch.sum(pts1 * Ep0, -1) # [N,]
Etp1 = pts1 @ E # [N, 3]
d = p1Ep0**2 * (
1.0 / (Ep0[:, 0] ** 2 + Ep0[:, 1] ** 2)
+ 1.0 / (Etp1[:, 0] ** 2 + Etp1[:, 1] ** 2)
) # N
return d
def compute_symmetrical_epipolar_errors(data):
"""
Update:
data (dict):{"epi_errs": [M]}
"""
Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3])
E_mat = Tx @ data["T_0to1"][:, :3, :3]
m_bids = data["m_bids"]
pts0 = data["mkpts0_f"]
pts1 = data["mkpts1_f"]
epi_errs = []
for bs in range(Tx.size(0)):
mask = m_bids == bs
epi_errs.append(
symmetric_epipolar_distance(
pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs]
)
)
epi_errs = torch.cat(epi_errs, dim=0)
data.update({"epi_errs": epi_errs})
def compute_symmetrical_epipolar_errors_offset(data):
"""
Update:
data (dict):{"epi_errs": [M]}
"""
Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3])
E_mat = Tx @ data["T_0to1"][:, :3, :3]
m_bids = data["offset_bids"]
l_ids = data["offset_lids"]
pts0 = data["offset_kpts0_f"]
pts1 = data["offset_kpts1_f"]
epi_errs = []
layer_num = data["predict_flow"][0].shape[0]
for bs in range(Tx.size(0)):
for ls in range(layer_num):
mask_b = m_bids == bs
mask_l = l_ids == ls
mask = mask_b & mask_l
epi_errs.append(
symmetric_epipolar_distance(
pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs]
)
)
epi_errs = torch.cat(epi_errs, dim=0)
data.update({"epi_errs_offset": epi_errs}) # [b*l*n]
def compute_symmetrical_epipolar_errors_offset_bidirectional(data):
"""
Update
data (dict):{"epi_errs": [M]}
"""
_compute_symmetrical_epipolar_errors_offset(data, "left")
_compute_symmetrical_epipolar_errors_offset(data, "right")
def _compute_symmetrical_epipolar_errors_offset(data, side):
"""
Update
data (dict):{"epi_errs": [M]}
"""
assert side == "left" or side == "right", "invalid side"
Tx = numeric.cross_product_matrix(data["T_0to1"][:, :3, 3])
E_mat = Tx @ data["T_0to1"][:, :3, :3]
m_bids = data["offset_bids_" + side]
l_ids = data["offset_lids_" + side]
pts0 = data["offset_kpts0_f_" + side]
pts1 = data["offset_kpts1_f_" + side]
epi_errs = []
layer_num = data["predict_flow"][0].shape[0]
for bs in range(Tx.size(0)):
for ls in range(layer_num):
mask_b = m_bids == bs
mask_l = l_ids == ls
mask = mask_b & mask_l
epi_errs.append(
symmetric_epipolar_distance(
pts0[mask], pts1[mask], E_mat[bs], data["K0"][bs], data["K1"][bs]
)
)
epi_errs = torch.cat(epi_errs, dim=0)
data.update({"epi_errs_offset_" + side: epi_errs}) # [b*l*n]
def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
if len(kpts0) < 5:
return None
# normalize keypoints
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
# normalize ransac threshold
ransac_thr = thresh / np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
# compute pose with cv2
E, mask = cv2.findEssentialMat(
kpts0, kpts1, np.eye(3), threshold=ransac_thr, prob=conf, method=cv2.RANSAC
)
if E is None:
print("\nE is None while trying to recover pose.\n")
return None
# recover pose from E
best_num_inliers = 0
ret = None
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
if n > best_num_inliers:
ret = (R, t[:, 0], mask.ravel() > 0)
best_num_inliers = n
return ret
def compute_pose_errors(data, config):
"""
Update:
data (dict):{
"R_errs" List[float]: [N]
"t_errs" List[float]: [N]
"inliers" List[np.ndarray]: [N]
}
"""
pixel_thr = config.TRAINER.RANSAC_PIXEL_THR # 0.5
conf = config.TRAINER.RANSAC_CONF # 0.99999
data.update({"R_errs": [], "t_errs": [], "inliers": []})
m_bids = data["m_bids"].cpu().numpy()
pts0 = data["mkpts0_f"].cpu().numpy()
pts1 = data["mkpts1_f"].cpu().numpy()
K0 = data["K0"].cpu().numpy()
K1 = data["K1"].cpu().numpy()
T_0to1 = data["T_0to1"].cpu().numpy()
for bs in range(K0.shape[0]):
mask = m_bids == bs
ret = estimate_pose(
pts0[mask], pts1[mask], K0[bs], K1[bs], pixel_thr, conf=conf
)
if ret is None:
data["R_errs"].append(np.inf)
data["t_errs"].append(np.inf)
data["inliers"].append(np.array([]).astype(np.bool))
else:
R, t, inliers = ret
t_err, R_err = relative_pose_error(T_0to1[bs], R, t, ignore_gt_t_thr=0.0)
data["R_errs"].append(R_err)
data["t_errs"].append(t_err)
data["inliers"].append(inliers)
# --- METRIC AGGREGATION ---
def error_auc(errors, thresholds):
"""
Args:
errors (list): [N,]
thresholds (list)
"""
errors = [0] + sorted(list(errors))
recall = list(np.linspace(0, 1, len(errors)))
aucs = []
thresholds = [5, 10, 20]
for thr in thresholds:
last_index = np.searchsorted(errors, thr)
y = recall[:last_index] + [recall[last_index - 1]]
x = errors[:last_index] + [thr]
aucs.append(np.trapz(y, x) / thr)
return {f"auc@{t}": auc for t, auc in zip(thresholds, aucs)}
def epidist_prec(errors, thresholds, ret_dict=False, offset=False):
precs = []
for thr in thresholds:
prec_ = []
for errs in errors:
correct_mask = errs < thr
prec_.append(np.mean(correct_mask) if len(correct_mask) > 0 else 0)
precs.append(np.mean(prec_) if len(prec_) > 0 else 0)
if ret_dict:
return (
{f"prec@{t:.0e}": prec for t, prec in zip(thresholds, precs)}
if not offset
else {f"prec_flow@{t:.0e}": prec for t, prec in zip(thresholds, precs)}
)
else:
return precs
def aggregate_metrics(metrics, epi_err_thr=5e-4):
"""Aggregate metrics for the whole dataset:
(This method should be called once per dataset)
1. AUC of the pose error (angular) at the threshold [5, 10, 20]
2. Mean matching precision at the threshold 5e-4(ScanNet), 1e-4(MegaDepth)
"""
# filter duplicates
unq_ids = OrderedDict((iden, id) for id, iden in enumerate(metrics["identifiers"]))
unq_ids = list(unq_ids.values())
logger.info(f"Aggregating metrics over {len(unq_ids)} unique items...")
# pose auc
angular_thresholds = [5, 10, 20]
pose_errors = np.max(np.stack([metrics["R_errs"], metrics["t_errs"]]), axis=0)[
unq_ids
]
aucs = error_auc(pose_errors, angular_thresholds) # (auc@5, auc@10, auc@20)
# matching precision
dist_thresholds = [epi_err_thr]
precs = epidist_prec(
np.array(metrics["epi_errs"], dtype=object)[unq_ids], dist_thresholds, True
) # (prec@err_thr)
# offset precision
try:
precs_offset = epidist_prec(
np.array(metrics["epi_errs_offset"], dtype=object)[unq_ids],
[2e-3],
True,
offset=True,
)
return {**aucs, **precs, **precs_offset}
except:
return {**aucs, **precs}
|