File size: 6,246 Bytes
dbf8b7e
 
 
 
 
358ab8f
dbf8b7e
 
 
 
358ab8f
dbf8b7e
 
 
 
 
 
 
 
 
 
 
358ab8f
dbf8b7e
 
 
 
 
 
 
 
358ab8f
dbf8b7e
358ab8f
 
 
 
 
 
 
 
 
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
358ab8f
 
 
dbf8b7e
358ab8f
 
 
 
dbf8b7e
 
358ab8f
dbf8b7e
 
358ab8f
dbf8b7e
 
 
358ab8f
dbf8b7e
 
358ab8f
dbf8b7e
358ab8f
dbf8b7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358ab8f
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
358ab8f
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
 
 
358ab8f
 
 
 
 
 
 
dbf8b7e
 
358ab8f
 
 
 
 
 
 
dbf8b7e
358ab8f
 
 
 
 
 
 
dbf8b7e
358ab8f
 
 
 
 
 
 
dbf8b7e
358ab8f
 
 
 
 
 
 
dbf8b7e
 
 
 
 
 
 
 
 
 
 
358ab8f
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
358ab8f
dbf8b7e
 
358ab8f
dbf8b7e
 
 
 
 
 
358ab8f
 
 
 
 
 
 
dbf8b7e
 
358ab8f
 
 
 
 
 
 
dbf8b7e
358ab8f
 
 
 
 
 
 
dbf8b7e
358ab8f
 
 
 
 
 
 
dbf8b7e
358ab8f
 
 
 
 
 
 
dbf8b7e
 
 
 
 
 
 
358ab8f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm


class ResNet18(nn.Module):
    def __init__(self, pretrained=False) -> None:
        super().__init__()
        self.net = tvm.resnet18(pretrained=pretrained)

    def forward(self, x):
        self = self.net
        x1 = x
        x = self.conv1(x1)
        x = self.bn1(x)
        x2 = self.relu(x)
        x = self.maxpool(x2)
        x4 = self.layer1(x)
        x8 = self.layer2(x4)
        x16 = self.layer3(x8)
        x32 = self.layer4(x16)
        return {32: x32, 16: x16, 8: x8, 4: x4, 2: x2, 1: x1}

    def train(self, mode=True):
        super().train(mode)
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
            pass


class ResNet50(nn.Module):
    def __init__(
        self,
        pretrained=False,
        high_res=False,
        weights=None,
        dilation=None,
        freeze_bn=True,
        anti_aliased=False,
    ) -> None:
        super().__init__()
        if dilation is None:
            dilation = [False, False, False]
        if anti_aliased:
            pass
        else:
            if weights is not None:
                self.net = tvm.resnet50(
                    weights=weights, replace_stride_with_dilation=dilation
                )
            else:
                self.net = tvm.resnet50(
                    pretrained=pretrained, replace_stride_with_dilation=dilation
                )

        self.high_res = high_res
        self.freeze_bn = freeze_bn

    def forward(self, x):
        net = self.net
        feats = {1: x}
        x = net.conv1(x)
        x = net.bn1(x)
        x = net.relu(x)
        feats[2] = x
        x = net.maxpool(x)
        x = net.layer1(x)
        feats[4] = x
        x = net.layer2(x)
        feats[8] = x
        x = net.layer3(x)
        feats[16] = x
        x = net.layer4(x)
        feats[32] = x
        return feats

    def train(self, mode=True):
        super().train(mode)
        if self.freeze_bn:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                pass


class ResNet101(nn.Module):
    def __init__(self, pretrained=False, high_res=False, weights=None) -> None:
        super().__init__()
        if weights is not None:
            self.net = tvm.resnet101(weights=weights)
        else:
            self.net = tvm.resnet101(pretrained=pretrained)
        self.high_res = high_res
        self.scale_factor = 1 if not high_res else 1.5

    def forward(self, x):
        net = self.net
        feats = {1: x}
        sf = self.scale_factor
        if self.high_res:
            x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
        x = net.conv1(x)
        x = net.bn1(x)
        x = net.relu(x)
        feats[2] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.maxpool(x)
        x = net.layer1(x)
        feats[4] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.layer2(x)
        feats[8] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.layer3(x)
        feats[16] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.layer4(x)
        feats[32] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        return feats

    def train(self, mode=True):
        super().train(mode)
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
            pass


class WideResNet50(nn.Module):
    def __init__(self, pretrained=False, high_res=False, weights=None) -> None:
        super().__init__()
        if weights is not None:
            self.net = tvm.wide_resnet50_2(weights=weights)
        else:
            self.net = tvm.wide_resnet50_2(pretrained=pretrained)
        self.high_res = high_res
        self.scale_factor = 1 if not high_res else 1.5

    def forward(self, x):
        net = self.net
        feats = {1: x}
        sf = self.scale_factor
        if self.high_res:
            x = F.interpolate(x, scale_factor=sf, align_corners=False, mode="bicubic")
        x = net.conv1(x)
        x = net.bn1(x)
        x = net.relu(x)
        feats[2] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.maxpool(x)
        x = net.layer1(x)
        feats[4] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.layer2(x)
        feats[8] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.layer3(x)
        feats[16] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        x = net.layer4(x)
        feats[32] = (
            x
            if not self.high_res
            else F.interpolate(
                x, scale_factor=1 / sf, align_corners=False, mode="bilinear"
            )
        )
        return feats

    def train(self, mode=True):
        super().train(mode)
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
            pass