File size: 4,299 Bytes
10b4a5f
 
 
 
 
 
 
 
 
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
 
358ab8f
10b4a5f
 
358ab8f
 
 
10b4a5f
 
358ab8f
10b4a5f
 
 
 
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
358ab8f
10b4a5f
 
 
 
358ab8f
 
10b4a5f
 
 
 
358ab8f
 
 
 
 
 
10b4a5f
 
 
358ab8f
10b4a5f
358ab8f
10b4a5f
 
358ab8f
 
 
10b4a5f
358ab8f
 
 
 
 
10b4a5f
 
358ab8f
 
 
10b4a5f
358ab8f
10b4a5f
358ab8f
 
10b4a5f
 
 
 
358ab8f
 
 
 
10b4a5f
 
 
358ab8f
 
 
 
10b4a5f
 
358ab8f
 
10b4a5f
 
 
358ab8f
 
10b4a5f
358ab8f
 
10b4a5f
 
358ab8f
10b4a5f
358ab8f
 
10b4a5f
 
 
 
358ab8f
 
10b4a5f
358ab8f
 
10b4a5f
 
 
358ab8f
 
 
10b4a5f
 
 
 
358ab8f
 
 
10b4a5f
 
 
358ab8f
10b4a5f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import pdb
import os
import sys
import tqdm

import numpy as np
import torch

from PIL import Image
from matplotlib import pyplot as pl

pl.ion()
from scipy.ndimage import uniform_filter

smooth = lambda arr: uniform_filter(arr, 3)


def transparent(img, alpha, cmap, **kw):
    from matplotlib.colors import Normalize

    colored_img = cmap(Normalize(clip=True, **kw)(img))
    colored_img[:, :, -1] = alpha
    return colored_img


from tools import common
from tools.dataloader import norm_RGB
from nets.patchnet import *
from extract import NonMaxSuppression


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser("Visualize the patch detector and descriptor")

    parser.add_argument("--img", type=str, default="imgs/brooklyn.png")
    parser.add_argument("--resize", type=int, default=512)
    parser.add_argument("--out", type=str, default="viz.png")

    parser.add_argument("--checkpoint", type=str, required=True, help="network path")
    parser.add_argument("--net", type=str, default="", help="network command")

    parser.add_argument("--max-kpts", type=int, default=200)
    parser.add_argument("--reliability-thr", type=float, default=0.8)
    parser.add_argument("--repeatability-thr", type=float, default=0.7)
    parser.add_argument(
        "--border", type=int, default=20, help="rm keypoints close to border"
    )

    parser.add_argument("--gpu", type=int, nargs="+", required=True, help="-1 for CPU")
    parser.add_argument("--dbg", type=str, nargs="+", default=(), help="debug options")

    args = parser.parse_args()
    args.dbg = set(args.dbg)

    iscuda = common.torch_set_gpu(args.gpu)
    device = torch.device("cuda" if iscuda else "cpu")

    # create network
    checkpoint = torch.load(args.checkpoint, lambda a, b: a)
    args.net = args.net or checkpoint["net"]
    print("\n>> Creating net = " + args.net)
    net = eval(args.net)
    net.load_state_dict(
        {k.replace("module.", ""): v for k, v in checkpoint["state_dict"].items()}
    )
    if iscuda:
        net = net.cuda()
    print(f" ( Model size: {common.model_size(net)/1000:.0f}K parameters )")

    img = Image.open(args.img).convert("RGB")
    if args.resize:
        img.thumbnail((args.resize, args.resize))
    img = np.asarray(img)

    detector = NonMaxSuppression(
        rel_thr=args.reliability_thr, rep_thr=args.repeatability_thr
    )

    with torch.no_grad():
        print(">> computing features...")
        res = net(imgs=[norm_RGB(img).unsqueeze(0).to(device)])
        rela = res.get("reliability")
        repe = res.get("repeatability")
        kpts = detector(**res).T[:, [1, 0]]
        kpts = kpts[repe[0][0, 0][kpts[:, 1], kpts[:, 0]].argsort()[-args.max_kpts :]]

    fig = pl.figure("viz")
    kw = dict(cmap=pl.cm.RdYlGn, vmax=1)
    crop = (slice(args.border, -args.border or 1),) * 2

    if "reliability" in args.dbg:

        ax1 = pl.subplot(131)
        pl.imshow(img[crop], cmap=pl.cm.gray)
        pl.xticks(())
        pl.yticks(())

        pl.subplot(132)
        pl.imshow(img[crop], cmap=pl.cm.gray, alpha=0)
        pl.xticks(())
        pl.yticks(())

        x, y = kpts[:, 0:2].cpu().numpy().T - args.border
        pl.plot(x, y, "+", c=(0, 1, 0), ms=10, scalex=0, scaley=0)

        ax1 = pl.subplot(133)
        rela = rela[0][0, 0].cpu().numpy()
        pl.imshow(rela[crop], cmap=pl.cm.RdYlGn, vmax=1, vmin=0.9)
        pl.xticks(())
        pl.yticks(())

    else:
        ax1 = pl.subplot(131)
        pl.imshow(img[crop], cmap=pl.cm.gray)
        pl.xticks(())
        pl.yticks(())

        x, y = kpts[:, 0:2].cpu().numpy().T - args.border
        pl.plot(x, y, "+", c=(0, 1, 0), ms=10, scalex=0, scaley=0)

        pl.subplot(132)
        pl.imshow(img[crop], cmap=pl.cm.gray)
        pl.xticks(())
        pl.yticks(())
        c = repe[0][0, 0].cpu().numpy()
        pl.imshow(transparent(smooth(c)[crop], 0.5, vmin=0, **kw))

        ax1 = pl.subplot(133)
        pl.imshow(img[crop], cmap=pl.cm.gray)
        pl.xticks(())
        pl.yticks(())
        rela = rela[0][0, 0].cpu().numpy()
        pl.imshow(transparent(rela[crop], 0.5, vmin=0.9, **kw))

    pl.gcf().set_size_inches(9, 2.73)
    pl.subplots_adjust(0.01, 0.01, 0.99, 0.99, hspace=0.1)
    pl.savefig(args.out)
    pdb.set_trace()