Spaces:
Running
Running
File size: 11,298 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
"""
Simply load images from a folder or nested folders (does not have any split),
and apply homographic adaptations to it. Yields an image pair without border
artifacts.
"""
import argparse
import logging
import shutil
import tarfile
from pathlib import Path
import cv2
import matplotlib.pyplot as plt
import numpy as np
import omegaconf
import torch
from omegaconf import OmegaConf
from tqdm import tqdm
from ..geometry.homography import (
compute_homography,
sample_homography_corners,
warp_points,
)
from ..models.cache_loader import CacheLoader, pad_local_features
from ..settings import DATA_PATH
from ..utils.image import read_image
from ..utils.tools import fork_rng
from ..visualization.viz2d import plot_image_grid
from .augmentations import IdentityAugmentation, augmentations
from .base_dataset import BaseDataset
logger = logging.getLogger(__name__)
def sample_homography(img, conf: dict, size: list):
data = {}
H, _, coords, _ = sample_homography_corners(img.shape[:2][::-1], **conf)
data["image"] = cv2.warpPerspective(img, H, tuple(size))
data["H_"] = H.astype(np.float32)
data["coords"] = coords.astype(np.float32)
data["image_size"] = np.array(size, dtype=np.float32)
return data
class HomographyDataset(BaseDataset):
default_conf = {
# image search
"data_dir": "revisitop1m", # the top-level directory
"image_dir": "jpg/", # the subdirectory with the images
"image_list": "revisitop1m.txt", # optional: list or filename of list
"glob": ["*.jpg", "*.png", "*.jpeg", "*.JPG", "*.PNG"],
# splits
"train_size": 100,
"val_size": 10,
"shuffle_seed": 0, # or None to skip
# image loading
"grayscale": False,
"triplet": False,
"right_only": False, # image0 is orig (rescaled), image1 is right
"reseed": False,
"homography": {
"difficulty": 0.8,
"translation": 1.0,
"max_angle": 60,
"n_angles": 10,
"patch_shape": [640, 480],
"min_convexity": 0.05,
},
"photometric": {
"name": "dark",
"p": 0.75,
# 'difficulty': 1.0, # currently unused
},
# feature loading
"load_features": {
"do": False,
**CacheLoader.default_conf,
"collate": False,
"thresh": 0.0,
"max_num_keypoints": -1,
"force_num_keypoints": False,
},
}
def _init(self, conf):
data_dir = DATA_PATH / conf.data_dir
if not data_dir.exists():
if conf.data_dir == "revisitop1m":
logger.info("Downloading the revisitop1m dataset.")
self.download_revisitop1m()
else:
raise FileNotFoundError(data_dir)
image_dir = data_dir / conf.image_dir
images = []
if conf.image_list is None:
glob = [conf.glob] if isinstance(conf.glob, str) else conf.glob
for g in glob:
images += list(image_dir.glob("**/" + g))
if len(images) == 0:
raise ValueError(f"Cannot find any image in folder: {image_dir}.")
images = [i.relative_to(image_dir).as_posix() for i in images]
images = sorted(images) # for deterministic behavior
logger.info("Found %d images in folder.", len(images))
elif isinstance(conf.image_list, (str, Path)):
image_list = data_dir / conf.image_list
if not image_list.exists():
raise FileNotFoundError(f"Cannot find image list {image_list}.")
images = image_list.read_text().rstrip("\n").split("\n")
for image in images:
if not (image_dir / image).exists():
raise FileNotFoundError(image_dir / image)
logger.info("Found %d images in list file.", len(images))
elif isinstance(conf.image_list, omegaconf.listconfig.ListConfig):
images = conf.image_list.to_container()
for image in images:
if not (image_dir / image).exists():
raise FileNotFoundError(image_dir / image)
else:
raise ValueError(conf.image_list)
if conf.shuffle_seed is not None:
np.random.RandomState(conf.shuffle_seed).shuffle(images)
train_images = images[: conf.train_size]
val_images = images[conf.train_size : conf.train_size + conf.val_size]
self.images = {"train": train_images, "val": val_images}
def download_revisitop1m(self):
data_dir = DATA_PATH / self.conf.data_dir
tmp_dir = data_dir.parent / "revisitop1m_tmp"
if tmp_dir.exists(): # The previous download failed.
shutil.rmtree(tmp_dir)
image_dir = tmp_dir / self.conf.image_dir
image_dir.mkdir(exist_ok=True, parents=True)
num_files = 100
url_base = "http://ptak.felk.cvut.cz/revisitop/revisitop1m/"
list_name = "revisitop1m.txt"
torch.hub.download_url_to_file(url_base + list_name, tmp_dir / list_name)
for n in tqdm(range(num_files), position=1):
tar_name = "revisitop1m.{}.tar.gz".format(n + 1)
tar_path = image_dir / tar_name
torch.hub.download_url_to_file(url_base + "jpg/" + tar_name, tar_path)
with tarfile.open(tar_path) as tar:
tar.extractall(path=image_dir)
tar_path.unlink()
shutil.move(tmp_dir, data_dir)
def get_dataset(self, split):
return _Dataset(self.conf, self.images[split], split)
class _Dataset(torch.utils.data.Dataset):
def __init__(self, conf, image_names, split):
self.conf = conf
self.split = split
self.image_names = np.array(image_names)
self.image_dir = DATA_PATH / conf.data_dir / conf.image_dir
aug_conf = conf.photometric
aug_name = aug_conf.name
assert (
aug_name in augmentations.keys()
), f'{aug_name} not in {" ".join(augmentations.keys())}'
self.photo_augment = augmentations[aug_name](aug_conf)
self.left_augment = (
IdentityAugmentation() if conf.right_only else self.photo_augment
)
self.img_to_tensor = IdentityAugmentation()
if conf.load_features.do:
self.feature_loader = CacheLoader(conf.load_features)
def _transform_keypoints(self, features, data):
"""Transform keypoints by a homography, threshold them,
and potentially keep only the best ones."""
# Warp points
features["keypoints"] = warp_points(
features["keypoints"], data["H_"], inverse=False
)
h, w = data["image"].shape[1:3]
valid = (
(features["keypoints"][:, 0] >= 0)
& (features["keypoints"][:, 0] <= w - 1)
& (features["keypoints"][:, 1] >= 0)
& (features["keypoints"][:, 1] <= h - 1)
)
features["keypoints"] = features["keypoints"][valid]
# Threshold
if self.conf.load_features.thresh > 0:
valid = features["keypoint_scores"] >= self.conf.load_features.thresh
features = {k: v[valid] for k, v in features.items()}
# Get the top keypoints and pad
n = self.conf.load_features.max_num_keypoints
if n > -1:
inds = np.argsort(-features["keypoint_scores"])
features = {k: v[inds[:n]] for k, v in features.items()}
if self.conf.load_features.force_num_keypoints:
features = pad_local_features(
features, self.conf.load_features.max_num_keypoints
)
return features
def __getitem__(self, idx):
if self.conf.reseed:
with fork_rng(self.conf.seed + idx, False):
return self.getitem(idx)
else:
return self.getitem(idx)
def _read_view(self, img, H_conf, ps, left=False):
data = sample_homography(img, H_conf, ps)
if left:
data["image"] = self.left_augment(data["image"], return_tensor=True)
else:
data["image"] = self.photo_augment(data["image"], return_tensor=True)
gs = data["image"].new_tensor([0.299, 0.587, 0.114]).view(3, 1, 1)
if self.conf.grayscale:
data["image"] = (data["image"] * gs).sum(0, keepdim=True)
if self.conf.load_features.do:
features = self.feature_loader({k: [v] for k, v in data.items()})
features = self._transform_keypoints(features, data)
data["cache"] = features
return data
def getitem(self, idx):
name = self.image_names[idx]
img = read_image(self.image_dir / name, False)
if img is None:
logging.warning("Image %s could not be read.", name)
img = np.zeros((1024, 1024) + (() if self.conf.grayscale else (3,)))
img = img.astype(np.float32) / 255.0
size = img.shape[:2][::-1]
ps = self.conf.homography.patch_shape
left_conf = omegaconf.OmegaConf.to_container(self.conf.homography)
if self.conf.right_only:
left_conf["difficulty"] = 0.0
data0 = self._read_view(img, left_conf, ps, left=True)
data1 = self._read_view(img, self.conf.homography, ps, left=False)
H = compute_homography(data0["coords"], data1["coords"], [1, 1])
data = {
"name": name,
"original_image_size": np.array(size),
"H_0to1": H.astype(np.float32),
"idx": idx,
"view0": data0,
"view1": data1,
}
if self.conf.triplet:
# Generate third image
data2 = self._read_view(img, self.conf.homography, ps, left=False)
H02 = compute_homography(data0["coords"], data2["coords"], [1, 1])
H12 = compute_homography(data1["coords"], data2["coords"], [1, 1])
data = {
"H_0to2": H02.astype(np.float32),
"H_1to2": H12.astype(np.float32),
"view2": data2,
**data,
}
return data
def __len__(self):
return len(self.image_names)
def visualize(args):
conf = {
"batch_size": 1,
"num_workers": 1,
"prefetch_factor": 1,
}
conf = OmegaConf.merge(conf, OmegaConf.from_cli(args.dotlist))
dataset = HomographyDataset(conf)
loader = dataset.get_data_loader("train")
logger.info("The dataset has %d elements.", len(loader))
with fork_rng(seed=dataset.conf.seed):
images = []
for _, data in zip(range(args.num_items), loader):
images.append(
(data[f"view{i}"]["image"][0].permute(1, 2, 0) for i in range(2))
)
plot_image_grid(images, dpi=args.dpi)
plt.tight_layout()
plt.show()
if __name__ == "__main__":
from .. import logger # overwrite the logger
parser = argparse.ArgumentParser()
parser.add_argument("--num_items", type=int, default=8)
parser.add_argument("--dpi", type=int, default=100)
parser.add_argument("dotlist", nargs="*")
args = parser.parse_intermixed_args()
visualize(args)
|