Spaces:
Running
Running
File size: 12,211 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import torch
from sklearn.cluster import DBSCAN
from .. import get_model
from ..base_model import BaseModel
def sample_descriptors_corner_conv(keypoints, descriptors, s: int = 8):
"""Interpolate descriptors at keypoint locations"""
b, c, h, w = descriptors.shape
keypoints = keypoints / (keypoints.new_tensor([w, h]) * s)
keypoints = keypoints * 2 - 1 # normalize to (-1, 1)
descriptors = torch.nn.functional.grid_sample(
descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
)
descriptors = torch.nn.functional.normalize(
descriptors.reshape(b, c, -1), p=2, dim=1
)
return descriptors
def lines_to_wireframe(
lines, line_scores, all_descs, s, nms_radius, force_num_lines, max_num_lines
):
"""Given a set of lines, their score and dense descriptors,
merge close-by endpoints and compute a wireframe defined by
its junctions and connectivity.
Returns:
junctions: list of [num_junc, 2] tensors listing all wireframe junctions
junc_scores: list of [num_junc] tensors with the junction score
junc_descs: list of [dim, num_junc] tensors with the junction descriptors
connectivity: list of [num_junc, num_junc] bool arrays with True when 2
junctions are connected
new_lines: the new set of [b_size, num_lines, 2, 2] lines
lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the
junctions of each endpoint
num_true_junctions: a list of the number of valid junctions for each image
in the batch, i.e. before filling with random ones
"""
b_size, _, h, w = all_descs.shape
device = lines.device
h, w = h * s, w * s
endpoints = lines.reshape(b_size, -1, 2)
(
junctions,
junc_scores,
connectivity,
new_lines,
lines_junc_idx,
num_true_junctions,
) = ([], [], [], [], [], [])
for bs in range(b_size):
# Cluster the junctions that are close-by
db = DBSCAN(eps=nms_radius, min_samples=1).fit(endpoints[bs].cpu().numpy())
clusters = db.labels_
n_clusters = len(set(clusters))
num_true_junctions.append(n_clusters)
# Compute the average junction and score for each cluster
clusters = torch.tensor(clusters, dtype=torch.long, device=device)
new_junc = torch.zeros(n_clusters, 2, dtype=torch.float, device=device)
new_junc.scatter_reduce_(
0,
clusters[:, None].repeat(1, 2),
endpoints[bs],
reduce="mean",
include_self=False,
)
junctions.append(new_junc)
new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device)
new_scores.scatter_reduce_(
0,
clusters,
torch.repeat_interleave(line_scores[bs], 2),
reduce="mean",
include_self=False,
)
junc_scores.append(new_scores)
# Compute the new lines
new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2))
lines_junc_idx.append(clusters.reshape(-1, 2))
if force_num_lines:
# Add random junctions (with no connectivity)
missing = max_num_lines * 2 - len(junctions[-1])
junctions[-1] = torch.cat(
[
junctions[-1],
torch.rand(missing, 2).to(lines)
* lines.new_tensor([[w - 1, h - 1]]),
],
dim=0,
)
junc_scores[-1] = torch.cat(
[junc_scores[-1], torch.zeros(missing).to(lines)], dim=0
)
junc_connect = torch.eye(max_num_lines * 2, dtype=torch.bool, device=device)
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
junc_connect[pairs[:, 0], pairs[:, 1]] = True
junc_connect[pairs[:, 1], pairs[:, 0]] = True
connectivity.append(junc_connect)
else:
# Compute the junction connectivity
junc_connect = torch.eye(n_clusters, dtype=torch.bool, device=device)
pairs = clusters.reshape(-1, 2) # these pairs are connected by a line
junc_connect[pairs[:, 0], pairs[:, 1]] = True
junc_connect[pairs[:, 1], pairs[:, 0]] = True
connectivity.append(junc_connect)
junctions = torch.stack(junctions, dim=0)
new_lines = torch.stack(new_lines, dim=0)
lines_junc_idx = torch.stack(lines_junc_idx, dim=0)
# Interpolate the new junction descriptors
junc_descs = sample_descriptors_corner_conv(junctions, all_descs, s).mT
return (
junctions,
junc_scores,
junc_descs,
connectivity,
new_lines,
lines_junc_idx,
num_true_junctions,
)
class WireframeExtractor(BaseModel):
default_conf = {
"point_extractor": {
"name": None,
"trainable": False,
"dense_outputs": True,
"max_num_keypoints": None,
"force_num_keypoints": False,
},
"line_extractor": {
"name": None,
"trainable": False,
"max_num_lines": None,
"force_num_lines": False,
"min_length": 15,
},
"wireframe_params": {
"merge_points": True,
"merge_line_endpoints": True,
"nms_radius": 3,
},
}
required_data_keys = ["image"]
def _init(self, conf):
self.point_extractor = get_model(self.conf.point_extractor.name)(
self.conf.point_extractor
)
self.line_extractor = get_model(self.conf.line_extractor.name)(
self.conf.line_extractor
)
def _forward(self, data):
b_size, _, h, w = data["image"].shape
device = data["image"].device
if (
not self.conf.point_extractor.force_num_keypoints
or not self.conf.line_extractor.force_num_lines
):
assert b_size == 1, "Only batch size of 1 accepted for non padded inputs"
# Line detection
pred = self.line_extractor(data)
if pred["line_scores"].shape[-1] != 0:
pred["line_scores"] /= pred["line_scores"].max(dim=1)[0][:, None] + 1e-8
# Keypoint prediction
pred = {**pred, **self.point_extractor(data)}
assert (
"dense_descriptors" in pred
), "The KP extractor should return dense descriptors"
s_desc = data["image"].shape[2] // pred["dense_descriptors"].shape[2]
# Remove keypoints that are too close to line endpoints
if self.conf.wireframe_params.merge_points:
line_endpts = pred["lines"].reshape(b_size, -1, 2)
dist_pt_lines = torch.norm(
pred["keypoints"][:, :, None] - line_endpts[:, None], dim=-1
)
# For each keypoint, mark it as valid or to remove
pts_to_remove = torch.any(
dist_pt_lines < self.conf.wireframe_params.nms_radius, dim=2
)
if self.conf.point_extractor.force_num_keypoints:
# Replace the points with random ones
num_to_remove = pts_to_remove.int().sum().item()
pred["keypoints"][pts_to_remove] = torch.rand(
num_to_remove, 2, device=device
) * pred["keypoints"].new_tensor([[w - 1, h - 1]])
pred["keypoint_scores"][pts_to_remove] = 0
for bs in range(b_size):
descrs = sample_descriptors_corner_conv(
pred["keypoints"][bs][pts_to_remove[bs]][None],
pred["dense_descriptors"][bs][None],
s_desc,
)
pred["descriptors"][bs][pts_to_remove[bs]] = descrs[0].T
else:
# Simply remove them (we assume batch_size = 1 here)
assert len(pred["keypoints"]) == 1
pred["keypoints"] = pred["keypoints"][0][~pts_to_remove[0]][None]
pred["keypoint_scores"] = pred["keypoint_scores"][0][~pts_to_remove[0]][
None
]
pred["descriptors"] = pred["descriptors"][0][~pts_to_remove[0]][None]
# Connect the lines together to form a wireframe
orig_lines = pred["lines"].clone()
if (
self.conf.wireframe_params.merge_line_endpoints
and len(pred["lines"][0]) > 0
):
# Merge first close-by endpoints to connect lines
(
line_points,
line_pts_scores,
line_descs,
line_association,
pred["lines"],
lines_junc_idx,
n_true_junctions,
) = lines_to_wireframe(
pred["lines"],
pred["line_scores"],
pred["dense_descriptors"],
s=s_desc,
nms_radius=self.conf.wireframe_params.nms_radius,
force_num_lines=self.conf.line_extractor.force_num_lines,
max_num_lines=self.conf.line_extractor.max_num_lines,
)
# Add the keypoints to the junctions and fill the rest with random keypoints
(all_points, all_scores, all_descs, pl_associativity) = [], [], [], []
for bs in range(b_size):
all_points.append(
torch.cat([line_points[bs], pred["keypoints"][bs]], dim=0)
)
all_scores.append(
torch.cat([line_pts_scores[bs], pred["keypoint_scores"][bs]], dim=0)
)
all_descs.append(
torch.cat([line_descs[bs], pred["descriptors"][bs]], dim=0)
)
associativity = torch.eye(
len(all_points[-1]), dtype=torch.bool, device=device
)
associativity[
: n_true_junctions[bs], : n_true_junctions[bs]
] = line_association[bs][: n_true_junctions[bs], : n_true_junctions[bs]]
pl_associativity.append(associativity)
all_points = torch.stack(all_points, dim=0)
all_scores = torch.stack(all_scores, dim=0)
all_descs = torch.stack(all_descs, dim=0)
pl_associativity = torch.stack(pl_associativity, dim=0)
else:
# Lines are independent
all_points = torch.cat(
[pred["lines"].reshape(b_size, -1, 2), pred["keypoints"]], dim=1
)
n_pts = all_points.shape[1]
num_lines = pred["lines"].shape[1]
n_true_junctions = [num_lines * 2] * b_size
all_scores = torch.cat(
[
torch.repeat_interleave(pred["line_scores"], 2, dim=1),
pred["keypoint_scores"],
],
dim=1,
)
line_descs = sample_descriptors_corner_conv(
pred["lines"].reshape(b_size, -1, 2), pred["dense_descriptors"], s_desc
).mT # [B, n_lines * 2, desc_dim]
all_descs = torch.cat([line_descs, pred["descriptors"]], dim=1)
pl_associativity = torch.eye(n_pts, dtype=torch.bool, device=device)[
None
].repeat(b_size, 1, 1)
lines_junc_idx = (
torch.arange(num_lines * 2, device=device)
.reshape(1, -1, 2)
.repeat(b_size, 1, 1)
)
del pred["dense_descriptors"] # Remove dense descriptors to save memory
torch.cuda.empty_cache()
pred["keypoints"] = all_points
pred["keypoint_scores"] = all_scores
pred["descriptors"] = all_descs
pred["pl_associativity"] = pl_associativity
pred["num_junctions"] = torch.tensor(n_true_junctions)
pred["orig_lines"] = orig_lines
pred["lines_junc_idx"] = lines_junc_idx
return pred
def loss(self, pred, data):
raise NotImplementedError
def metrics(self, _pred, _data):
return {}
|