File size: 5,309 Bytes
f90241e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the StaticThings3D dataset
# dataset at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/README.md#staticthings3d
# 1) Download StaticThings3D in /path/to/StaticThings3D/
#    with the script at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/scripts/download_staticthings3d.sh
#    --> depths.tar.bz2 frames_finalpass.tar.bz2 poses.tar.bz2 frames_cleanpass.tar.bz2 intrinsics.tar.bz2
# 2) unzip everything in the same /path/to/StaticThings3D/ directory
# 5) python datasets_preprocess/preprocess_staticthings3d.py --StaticThings3D_dir /path/to/tmp/StaticThings3D/
# --------------------------------------------------------
import os
import os.path as osp
import re
from tqdm import tqdm
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2

import path_to_root  # noqa
from dust3r.utils.parallel import parallel_threads
from dust3r.datasets.utils import cropping  # noqa


def get_parser():
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument('--StaticThings3D_dir', required=True)
    parser.add_argument('--precomputed_pairs', required=True)
    parser.add_argument('--output_dir', default='data/staticthings3d_processed')
    return parser


def main(db_root, pairs_path, output_dir):
    all_scenes = _list_all_scenes(db_root)

    # crop images
    args = [(db_root, osp.join(split, subsplit, seq), camera, f'{n:04d}', output_dir)
            for split, subsplit, seq in all_scenes for camera in ['left', 'right'] for n in range(6, 16)]
    parallel_threads(load_crop_and_save, args, star_args=True, front_num=1)

    # verify that all images are there
    CAM = {b'l': 'left', b'r': 'right'}
    pairs = np.load(pairs_path)
    for scene, seq, cam1, im1, cam2, im2 in tqdm(pairs):
        seq_path = osp.join('TRAIN', scene.decode('ascii'), f'{seq:04d}')
        for cam, idx in [(CAM[cam1], im1), (CAM[cam2], im2)]:
            for ext in ['clean', 'final']:
                impath = osp.join(output_dir, seq_path, cam, f"{idx:04n}_{ext}.jpg")
                assert osp.isfile(impath), f'missing an image at {impath=}'

    print(f'>> Saved all data to {output_dir}!')


def load_crop_and_save(db_root, relpath_, camera, num, out_dir):
    relpath = osp.join(relpath_, camera, num)
    if osp.isfile(osp.join(out_dir, relpath + '.npz')):
        return
    os.makedirs(osp.join(out_dir, relpath_, camera), exist_ok=True)

    # load everything
    intrinsics_in = readFloat(osp.join(db_root, 'intrinsics', relpath_, num + '.float3'))
    cam2world = np.linalg.inv(readFloat(osp.join(db_root, 'poses', relpath + '.float3')))
    depthmap_in = readFloat(osp.join(db_root, 'depths', relpath + '.float3'))
    img_clean = cv2.cvtColor(cv2.imread(osp.join(db_root, 'frames_cleanpass',
                             relpath + '.png'), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
    img_final = cv2.cvtColor(cv2.imread(osp.join(db_root, 'frames_finalpass',
                             relpath + '.png'), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)

    # do the crop
    assert img_clean.shape[:2] == (540, 960)
    assert img_final.shape[:2] == (540, 960)
    (clean_out, final_out), depthmap, intrinsics_out, R_in2out = _crop_image(
        intrinsics_in, (img_clean, img_final), depthmap_in, (512, 384))

    # write everything
    clean_out.save(osp.join(out_dir, relpath + '_clean.jpg'), quality=80)
    final_out.save(osp.join(out_dir, relpath + '_final.jpg'), quality=80)
    cv2.imwrite(osp.join(out_dir, relpath + '.exr'), depthmap)

    # New camera parameters
    cam2world[:3, :3] = cam2world[:3, :3] @ R_in2out.T
    np.savez(osp.join(out_dir, relpath + '.npz'), intrinsics=intrinsics_out, cam2world=cam2world)


def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(512, 512)):
    image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
        color_image_in, depthmap_in, intrinsics_in, resolution_out)
    R_in2out = np.eye(3)
    return image, depthmap, intrinsics_out, R_in2out


def _list_all_scenes(path):
    print('>> Listing all scenes')

    res = []
    for split in ['TRAIN']:
        for subsplit in 'ABC':
            for seq in os.listdir(osp.join(path, 'intrinsics', split, subsplit)):
                res.append((split, subsplit, seq))
    print(f'   (found ({len(res)}) scenes)')
    assert res, f'Did not find anything at {path=}'
    return res


def readFloat(name):
    with open(name, 'rb') as f:
        if (f.readline().decode("utf-8")) != 'float\n':
            raise Exception('float file %s did not contain <float> keyword' % name)

        dim = int(f.readline())

        dims = []
        count = 1
        for i in range(0, dim):
            d = int(f.readline())
            dims.append(d)
            count *= d

        dims = list(reversed(dims))
        data = np.fromfile(f, np.float32, count).reshape(dims)
    return data  # Hxw or CxHxW NxCxHxW


if __name__ == '__main__':
    parser = get_parser()
    args = parser.parse_args()
    main(args.StaticThings3D_dir, args.precomputed_pairs, args.output_dir)