Spaces:
Running
Running
File size: 5,309 Bytes
f90241e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the StaticThings3D dataset
# dataset at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/README.md#staticthings3d
# 1) Download StaticThings3D in /path/to/StaticThings3D/
# with the script at https://github.com/lmb-freiburg/robustmvd/blob/master/rmvd/data/scripts/download_staticthings3d.sh
# --> depths.tar.bz2 frames_finalpass.tar.bz2 poses.tar.bz2 frames_cleanpass.tar.bz2 intrinsics.tar.bz2
# 2) unzip everything in the same /path/to/StaticThings3D/ directory
# 5) python datasets_preprocess/preprocess_staticthings3d.py --StaticThings3D_dir /path/to/tmp/StaticThings3D/
# --------------------------------------------------------
import os
import os.path as osp
import re
from tqdm import tqdm
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2
import path_to_root # noqa
from dust3r.utils.parallel import parallel_threads
from dust3r.datasets.utils import cropping # noqa
def get_parser():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--StaticThings3D_dir', required=True)
parser.add_argument('--precomputed_pairs', required=True)
parser.add_argument('--output_dir', default='data/staticthings3d_processed')
return parser
def main(db_root, pairs_path, output_dir):
all_scenes = _list_all_scenes(db_root)
# crop images
args = [(db_root, osp.join(split, subsplit, seq), camera, f'{n:04d}', output_dir)
for split, subsplit, seq in all_scenes for camera in ['left', 'right'] for n in range(6, 16)]
parallel_threads(load_crop_and_save, args, star_args=True, front_num=1)
# verify that all images are there
CAM = {b'l': 'left', b'r': 'right'}
pairs = np.load(pairs_path)
for scene, seq, cam1, im1, cam2, im2 in tqdm(pairs):
seq_path = osp.join('TRAIN', scene.decode('ascii'), f'{seq:04d}')
for cam, idx in [(CAM[cam1], im1), (CAM[cam2], im2)]:
for ext in ['clean', 'final']:
impath = osp.join(output_dir, seq_path, cam, f"{idx:04n}_{ext}.jpg")
assert osp.isfile(impath), f'missing an image at {impath=}'
print(f'>> Saved all data to {output_dir}!')
def load_crop_and_save(db_root, relpath_, camera, num, out_dir):
relpath = osp.join(relpath_, camera, num)
if osp.isfile(osp.join(out_dir, relpath + '.npz')):
return
os.makedirs(osp.join(out_dir, relpath_, camera), exist_ok=True)
# load everything
intrinsics_in = readFloat(osp.join(db_root, 'intrinsics', relpath_, num + '.float3'))
cam2world = np.linalg.inv(readFloat(osp.join(db_root, 'poses', relpath + '.float3')))
depthmap_in = readFloat(osp.join(db_root, 'depths', relpath + '.float3'))
img_clean = cv2.cvtColor(cv2.imread(osp.join(db_root, 'frames_cleanpass',
relpath + '.png'), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
img_final = cv2.cvtColor(cv2.imread(osp.join(db_root, 'frames_finalpass',
relpath + '.png'), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
# do the crop
assert img_clean.shape[:2] == (540, 960)
assert img_final.shape[:2] == (540, 960)
(clean_out, final_out), depthmap, intrinsics_out, R_in2out = _crop_image(
intrinsics_in, (img_clean, img_final), depthmap_in, (512, 384))
# write everything
clean_out.save(osp.join(out_dir, relpath + '_clean.jpg'), quality=80)
final_out.save(osp.join(out_dir, relpath + '_final.jpg'), quality=80)
cv2.imwrite(osp.join(out_dir, relpath + '.exr'), depthmap)
# New camera parameters
cam2world[:3, :3] = cam2world[:3, :3] @ R_in2out.T
np.savez(osp.join(out_dir, relpath + '.npz'), intrinsics=intrinsics_out, cam2world=cam2world)
def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(512, 512)):
image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
color_image_in, depthmap_in, intrinsics_in, resolution_out)
R_in2out = np.eye(3)
return image, depthmap, intrinsics_out, R_in2out
def _list_all_scenes(path):
print('>> Listing all scenes')
res = []
for split in ['TRAIN']:
for subsplit in 'ABC':
for seq in os.listdir(osp.join(path, 'intrinsics', split, subsplit)):
res.append((split, subsplit, seq))
print(f' (found ({len(res)}) scenes)')
assert res, f'Did not find anything at {path=}'
return res
def readFloat(name):
with open(name, 'rb') as f:
if (f.readline().decode("utf-8")) != 'float\n':
raise Exception('float file %s did not contain <float> keyword' % name)
dim = int(f.readline())
dims = []
count = 1
for i in range(0, dim):
d = int(f.readline())
dims.append(d)
count *= d
dims = list(reversed(dims))
data = np.fromfile(f, np.float32, count).reshape(dims)
return data # Hxw or CxHxW NxCxHxW
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args.StaticThings3D_dir, args.precomputed_pairs, args.output_dir)
|