Spaces:
Running
Running
File size: 5,553 Bytes
437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
#!/usr/bin/env python
# coding: utf-8
import os, glob, cv2
import argparse
from argparse import Namespace
import yaml
from tqdm import tqdm
import torch
from torch.utils.data import Dataset, DataLoader, SequentialSampler
from src.datasets.custom_dataloader import TestDataLoader
from src.utils.dataset import read_img_gray
from configs.data.base import cfg as data_cfg
import viz
def get_model_config(method_name, dataset_name, root_dir="viz"):
config_file = f"{root_dir}/configs/{method_name}.yml"
with open(config_file, "r") as f:
model_conf = yaml.load(f, Loader=yaml.FullLoader)[dataset_name]
return model_conf
class DemoDataset(Dataset):
def __init__(self, dataset_dir, img_file=None, resize=0, down_factor=16):
self.dataset_dir = dataset_dir
if img_file is None:
self.list_img_files = glob.glob(os.path.join(dataset_dir, "*.*"))
self.list_img_files.sort()
else:
with open(img_file) as f:
self.list_img_files = [
os.path.join(dataset_dir, img_file.strip())
for img_file in f.readlines()
]
self.resize = resize
self.down_factor = down_factor
def __len__(self):
return len(self.list_img_files)
def __getitem__(self, idx):
img_path = self.list_img_files[
idx
] # os.path.join(self.dataset_dir, self.list_img_files[idx])
img, scale = read_img_gray(
img_path, resize=self.resize, down_factor=self.down_factor
)
return {"img": img, "id": idx, "img_path": img_path}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Visualize matches")
parser.add_argument("--gpu", "-gpu", type=str, default="0")
parser.add_argument("--method", type=str, default=None)
parser.add_argument("--dataset_dir", type=str, default="data/aachen-day-night")
parser.add_argument("--pair_dir", type=str, default=None)
parser.add_argument(
"--dataset_name",
type=str,
choices=["megadepth", "scannet", "aachen_v1.1", "inloc"],
default="megadepth",
)
parser.add_argument("--measure_time", action="store_true")
parser.add_argument("--no_viz", action="store_true")
parser.add_argument("--compute_eval_metrics", action="store_true")
parser.add_argument("--run_demo", action="store_true")
args = parser.parse_args()
model_cfg = get_model_config(args.method, args.dataset_name)
class_name = model_cfg["class"]
model = viz.__dict__[class_name](model_cfg)
# all_args = Namespace(**vars(args), **model_cfg)
if not args.run_demo:
if args.dataset_name == "megadepth":
from configs.data.megadepth_test_1500 import cfg
data_cfg.merge_from_other_cfg(cfg)
elif args.dataset_name == "scannet":
from configs.data.scannet_test_1500 import cfg
data_cfg.merge_from_other_cfg(cfg)
elif args.dataset_name == "aachen_v1.1":
data_cfg.merge_from_list(
[
"DATASET.TEST_DATA_SOURCE",
"aachen_v1.1",
"DATASET.TEST_DATA_ROOT",
os.path.join(args.dataset_dir, "images/images_upright"),
"DATASET.TEST_LIST_PATH",
args.pair_dir,
"DATASET.TEST_IMGSIZE",
model_cfg["imsize"],
]
)
elif args.dataset_name == "inloc":
data_cfg.merge_from_list(
[
"DATASET.TEST_DATA_SOURCE",
"inloc",
"DATASET.TEST_DATA_ROOT",
args.dataset_dir,
"DATASET.TEST_LIST_PATH",
args.pair_dir,
"DATASET.TEST_IMGSIZE",
model_cfg["imsize"],
]
)
has_ground_truth = str(data_cfg.DATASET.TEST_DATA_SOURCE).lower() in [
"megadepth",
"scannet",
]
dataloader = TestDataLoader(data_cfg)
with torch.no_grad():
for data_dict in tqdm(dataloader):
for k, v in data_dict.items():
if isinstance(v, torch.Tensor):
data_dict[k] = v.cuda() if torch.cuda.is_available() else v
img_root_dir = data_cfg.DATASET.TEST_DATA_ROOT
model.match_and_draw(
data_dict,
root_dir=img_root_dir,
ground_truth=has_ground_truth,
measure_time=args.measure_time,
viz_matches=(not args.no_viz),
)
if args.measure_time:
print(
"Running time for each image is {} miliseconds".format(
model.measure_time()
)
)
if args.compute_eval_metrics and has_ground_truth:
model.compute_eval_metrics()
else:
demo_dataset = DemoDataset(args.dataset_dir, img_file=args.pair_dir, resize=640)
sampler = SequentialSampler(demo_dataset)
dataloader = DataLoader(demo_dataset, batch_size=1, sampler=sampler)
writer = cv2.VideoWriter(
"topicfm_demo.mp4",
cv2.VideoWriter_fourcc(*"mp4v"),
15,
(640 * 2 + 5, 480 * 2 + 10),
)
model.run_demo(
iter(dataloader), writer
) # , output_dir="demo", no_display=True)
|