File size: 19,011 Bytes
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
4c12b36
437b5f6
 
 
4c12b36
 
437b5f6
 
 
4c12b36
437b5f6
4c12b36
 
437b5f6
 
 
 
 
 
 
4c12b36
 
437b5f6
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
437b5f6
 
 
4c12b36
 
 
 
 
 
 
 
 
437b5f6
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
437b5f6
 
4c12b36
437b5f6
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
4c12b36
437b5f6
 
4c12b36
 
 
437b5f6
 
4c12b36
 
 
437b5f6
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437b5f6
 
4c12b36
 
437b5f6
 
 
 
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
437b5f6
 
 
 
4c12b36
437b5f6
4c12b36
 
 
 
437b5f6
4c12b36
437b5f6
 
 
4c12b36
 
437b5f6
 
 
4c12b36
 
 
 
 
 
 
 
 
 
437b5f6
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
4c12b36
 
 
437b5f6
4c12b36
 
437b5f6
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
4c12b36
 
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
4c12b36
437b5f6
 
 
4c12b36
 
 
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
4c12b36
437b5f6
 
4c12b36
437b5f6
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
4c12b36
 
437b5f6
4c12b36
437b5f6
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
4c12b36
 
 
 
 
 
437b5f6
 
4c12b36
 
 
 
 
 
437b5f6
 
4c12b36
 
 
 
 
 
437b5f6
 
4c12b36
 
 
 
 
 
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
4c12b36
 
 
437b5f6
4c12b36
 
 
437b5f6
 
 
4c12b36
437b5f6
 
 
4c12b36
 
437b5f6
 
 
4c12b36
437b5f6
 
 
4c12b36
 
 
 
 
 
 
 
 
437b5f6
 
 
4c12b36
 
437b5f6
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
4c12b36
 
437b5f6
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
437b5f6
 
4c12b36
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
437b5f6
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
437b5f6
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
437b5f6
 
 
4c12b36
 
 
437b5f6
 
4c12b36
 
 
 
 
 
437b5f6
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
437b5f6
 
 
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
 
 
 
 
 
 
437b5f6
4c12b36
437b5f6
4c12b36
 
437b5f6
 
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
 
 
 
437b5f6
 
 
4c12b36
 
437b5f6
 
 
 
4c12b36
437b5f6
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
# Copyright 2019-present NAVER Corp.
# CC BY-NC-SA 3.0
# Available only for non-commercial use

import pdb
import numpy as np
from PIL import Image, ImageOps
import torchvision.transforms as tvf
import random
from math import ceil

from . import transforms_tools as F

"""
Example command to try out some transformation chain:

python -m tools.transforms --trfs "Scale(384), ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1), RandomRotation(10), RandomTilting(0.5, 'all'), RandomScale(240,320), RandomCrop(224)"
"""


def instanciate_transformation(cmd_line):
    """Create a sequence of transformations.

    cmd_line: (str)
        Comma-separated list of transformations.
        Ex: "Rotate(10), Scale(256)"
    """
    if not isinstance(cmd_line, str):
        return cmd_line  # already instanciated

    cmd_line = "tvf.Compose([%s])" % cmd_line
    try:
        return eval(cmd_line)
    except Exception as e:
        print("Cannot interpret this transform list: %s\nReason: %s" % (cmd_line, e))


class Scale(object):
    """Rescale the input PIL.Image to a given size.
    Copied from https://github.com/pytorch in torchvision/transforms/transforms.py

    The smallest dimension of the resulting image will be = size.

    if largest == True: same behaviour for the largest dimension.

    if not can_upscale: don't upscale
    if not can_downscale: don't downscale
    """

    def __init__(
        self,
        size,
        interpolation=Image.BILINEAR,
        largest=False,
        can_upscale=True,
        can_downscale=True,
    ):
        assert isinstance(size, int) or (len(size) == 2)
        self.size = size
        self.interpolation = interpolation
        self.largest = largest
        self.can_upscale = can_upscale
        self.can_downscale = can_downscale

    def __repr__(self):
        fmt_str = "RandomScale(%s" % str(self.size)
        if self.largest:
            fmt_str += ", largest=True"
        if not self.can_upscale:
            fmt_str += ", can_upscale=False"
        if not self.can_downscale:
            fmt_str += ", can_downscale=False"
        return fmt_str + ")"

    def get_params(self, imsize):
        w, h = imsize
        if isinstance(self.size, int):
            cmp = lambda a, b: (a >= b) if self.largest else (a <= b)
            if (cmp(w, h) and w == self.size) or (cmp(h, w) and h == self.size):
                ow, oh = w, h
            elif cmp(w, h):
                ow = self.size
                oh = int(self.size * h / w)
            else:
                oh = self.size
                ow = int(self.size * w / h)
        else:
            ow, oh = self.size
        return ow, oh

    def __call__(self, inp):
        img = F.grab_img(inp)
        w, h = img.size

        size2 = ow, oh = self.get_params(img.size)

        if size2 != img.size:
            a1, a2 = img.size, size2
            if (self.can_upscale and min(a1) < min(a2)) or (
                self.can_downscale and min(a1) > min(a2)
            ):
                img = img.resize(size2, self.interpolation)

        return F.update_img_and_labels(
            inp, img, persp=(ow / w, 0, 0, 0, oh / h, 0, 0, 0)
        )


class RandomScale(Scale):
    """Rescale the input PIL.Image to a random size.
    Copied from https://github.com/pytorch in torchvision/transforms/transforms.py

    Args:
        min_size (int): min size of the smaller edge of the picture.
        max_size (int): max size of the smaller edge of the picture.

        ar (float or tuple):
            max change of aspect ratio (width/height).

        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(
        self,
        min_size,
        max_size,
        ar=1,
        can_upscale=False,
        can_downscale=True,
        interpolation=Image.BILINEAR,
    ):
        Scale.__init__(
            self,
            0,
            can_upscale=can_upscale,
            can_downscale=can_downscale,
            interpolation=interpolation,
        )
        assert type(min_size) == type(
            max_size
        ), "min_size and max_size can only be 2 ints or 2 floats"
        assert (
            isinstance(min_size, int)
            and min_size >= 1
            or isinstance(min_size, float)
            and min_size > 0
        )
        assert isinstance(max_size, (int, float)) and min_size <= max_size
        self.min_size = min_size
        self.max_size = max_size
        if type(ar) in (float, int):
            ar = (min(1 / ar, ar), max(1 / ar, ar))
        assert 0.2 < ar[0] <= ar[1] < 5
        self.ar = ar

    def get_params(self, imsize):
        w, h = imsize
        if isinstance(self.min_size, float):
            min_size = int(self.min_size * min(w, h) + 0.5)
        if isinstance(self.max_size, float):
            max_size = int(self.max_size * min(w, h) + 0.5)
        if isinstance(self.min_size, int):
            min_size = self.min_size
        if isinstance(self.max_size, int):
            max_size = self.max_size

        if not self.can_upscale:
            max_size = min(max_size, min(w, h))

        size = int(0.5 + F.rand_log_uniform(min_size, max_size))
        ar = F.rand_log_uniform(*self.ar)  # change of aspect ratio

        if w < h:  # image is taller
            ow = size
            oh = int(0.5 + size * h / w / ar)
            if oh < min_size:
                ow, oh = int(0.5 + ow * float(min_size) / oh), min_size
        else:  # image is wider
            oh = size
            ow = int(0.5 + size * w / h * ar)
            if ow < min_size:
                ow, oh = min_size, int(0.5 + oh * float(min_size) / ow)

        assert ow >= min_size, "image too small (width=%d < min_size=%d)" % (
            ow,
            min_size,
        )
        assert oh >= min_size, "image too small (height=%d < min_size=%d)" % (
            oh,
            min_size,
        )
        return ow, oh


class RandomCrop(object):
    """Crop the given PIL Image at a random location.
    Copied from https://github.com/pytorch in torchvision/transforms/transforms.py

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
            of the image. Default is 0, i.e no padding. If a sequence of length
            4 is provided, it is used to pad left, top, right, bottom borders
            respectively.
    """

    def __init__(self, size, padding=0):
        if isinstance(size, int):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding

    def __repr__(self):
        return "RandomCrop(%s)" % str(self.size)

    @staticmethod
    def get_params(img, output_size):
        w, h = img.size
        th, tw = output_size
        assert h >= th and w >= tw, "Image of %dx%d is too small for crop %dx%d" % (
            w,
            h,
            tw,
            th,
        )

        y = np.random.randint(0, h - th) if h > th else 0
        x = np.random.randint(0, w - tw) if w > tw else 0
        return x, y, tw, th

    def __call__(self, inp):
        img = F.grab_img(inp)

        padl = padt = 0
        if self.padding:
            if F.is_pil_image(img):
                img = ImageOps.expand(img, border=self.padding, fill=0)
            else:
                assert isinstance(img, F.DummyImg)
                img = img.expand(border=self.padding)
            if isinstance(self.padding, int):
                padl = padt = self.padding
            else:
                padl, padt = self.padding[0:2]

        i, j, tw, th = self.get_params(img, self.size)
        img = img.crop((i, j, i + tw, j + th))

        return F.update_img_and_labels(
            inp, img, persp=(1, 0, padl - i, 0, 1, padt - j, 0, 0)
        )


class CenterCrop(RandomCrop):
    """Crops the given PIL Image at the center.
    Copied from https://github.com/pytorch in torchvision/transforms/transforms.py

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    @staticmethod
    def get_params(img, output_size):
        w, h = img.size
        th, tw = output_size
        y = int(0.5 + ((h - th) / 2.0))
        x = int(0.5 + ((w - tw) / 2.0))
        return x, y, tw, th


class RandomRotation(object):
    """Rescale the input PIL.Image to a random size.
    Copied from https://github.com/pytorch in torchvision/transforms/transforms.py

    Args:
        degrees (float):
            rotation angle.

        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, degrees, interpolation=Image.BILINEAR):
        self.degrees = degrees
        self.interpolation = interpolation

    def __call__(self, inp):
        img = F.grab_img(inp)
        w, h = img.size

        angle = np.random.uniform(-self.degrees, self.degrees)

        img = img.rotate(angle, resample=self.interpolation)
        w2, h2 = img.size

        trf = F.translate(-w / 2, -h / 2)
        trf = F.persp_mul(trf, F.rotate(-angle * np.pi / 180))
        trf = F.persp_mul(trf, F.translate(w2 / 2, h2 / 2))
        return F.update_img_and_labels(inp, img, persp=trf)


class RandomTilting(object):
    """Apply a random tilting (left, right, up, down) to the input PIL.Image
    Copied from https://github.com/pytorch in torchvision/transforms/transforms.py

    Args:
        maginitude (float):
            maximum magnitude of the random skew (value between 0 and 1)
        directions (string):
            tilting directions allowed (all, left, right, up, down)
            examples: "all", "left,right", "up-down-right"
    """

    def __init__(self, magnitude, directions="all"):
        self.magnitude = magnitude
        self.directions = directions.lower().replace(",", " ").replace("-", " ")

    def __repr__(self):
        return "RandomTilt(%g, '%s')" % (self.magnitude, self.directions)

    def __call__(self, inp):
        img = F.grab_img(inp)
        w, h = img.size

        x1, y1, x2, y2 = 0, 0, h, w
        original_plane = [(y1, x1), (y2, x1), (y2, x2), (y1, x2)]

        max_skew_amount = max(w, h)
        max_skew_amount = int(ceil(max_skew_amount * self.magnitude))
        skew_amount = random.randint(1, max_skew_amount)

        if self.directions == "all":
            choices = [0, 1, 2, 3]
        else:
            dirs = ["left", "right", "up", "down"]
            choices = []
            for d in self.directions.split():
                try:
                    choices.append(dirs.index(d))
                except:
                    raise ValueError("Tilting direction %s not recognized" % d)

        skew_direction = random.choice(choices)

        # print('randomtitlting: ', skew_amount, skew_direction) # to debug random

        if skew_direction == 0:
            # Left Tilt
            new_plane = [
                (y1, x1 - skew_amount),  # Top Left
                (y2, x1),  # Top Right
                (y2, x2),  # Bottom Right
                (y1, x2 + skew_amount),
            ]  # Bottom Left
        elif skew_direction == 1:
            # Right Tilt
            new_plane = [
                (y1, x1),  # Top Left
                (y2, x1 - skew_amount),  # Top Right
                (y2, x2 + skew_amount),  # Bottom Right
                (y1, x2),
            ]  # Bottom Left
        elif skew_direction == 2:
            # Forward Tilt
            new_plane = [
                (y1 - skew_amount, x1),  # Top Left
                (y2 + skew_amount, x1),  # Top Right
                (y2, x2),  # Bottom Right
                (y1, x2),
            ]  # Bottom Left
        elif skew_direction == 3:
            # Backward Tilt
            new_plane = [
                (y1, x1),  # Top Left
                (y2, x1),  # Top Right
                (y2 + skew_amount, x2),  # Bottom Right
                (y1 - skew_amount, x2),
            ]  # Bottom Left

        # To calculate the coefficients required by PIL for the perspective skew,
        # see the following Stack Overflow discussion: https://goo.gl/sSgJdj
        matrix = []

        for p1, p2 in zip(new_plane, original_plane):
            matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
            matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])

        A = np.matrix(matrix, dtype=np.float)
        B = np.array(original_plane).reshape(8)

        homography = np.dot(np.linalg.pinv(A), B)
        homography = tuple(np.array(homography).reshape(8))
        # print(homography)

        img = img.transform(
            img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC
        )

        homography = np.linalg.pinv(
            np.float32(homography + (1,)).reshape(3, 3)
        ).ravel()[:8]
        return F.update_img_and_labels(inp, img, persp=tuple(homography))


RandomTilt = RandomTilting  # redefinition


class Tilt(object):
    """Apply a known tilting to an image"""

    def __init__(self, *homography):
        assert len(homography) == 8
        self.homography = homography

    def __call__(self, inp):
        img = F.grab_img(inp)
        homography = self.homography
        # print(homography)

        img = img.transform(
            img.size, Image.PERSPECTIVE, homography, resample=Image.BICUBIC
        )

        homography = np.linalg.pinv(
            np.float32(homography + (1,)).reshape(3, 3)
        ).ravel()[:8]
        return F.update_img_and_labels(inp, img, persp=tuple(homography))


class StillTransform(object):
    """Takes and return an image, without changing its shape or geometry."""

    def _transform(self, img):
        raise NotImplementedError()

    def __call__(self, inp):
        img = F.grab_img(inp)

        # transform the image (size should not change)
        try:
            img = self._transform(img)
        except TypeError:
            pass

        return F.update_img_and_labels(inp, img, persp=(1, 0, 0, 0, 1, 0, 0, 0))


class PixelNoise(StillTransform):
    """Takes an image, and add random white noise."""

    def __init__(self, ampl=20):
        StillTransform.__init__(self)
        assert 0 <= ampl < 255
        self.ampl = ampl

    def __repr__(self):
        return "PixelNoise(%g)" % self.ampl

    def _transform(self, img):
        img = np.float32(img)
        img += np.random.uniform(
            0.5 - self.ampl / 2, 0.5 + self.ampl / 2, size=img.shape
        )
        return Image.fromarray(np.uint8(img.clip(0, 255)))


class ColorJitter(StillTransform):
    """Randomly change the brightness, contrast and saturation of an image.
    Copied from https://github.com/pytorch in torchvision/transforms/transforms.py

    Args:
    brightness (float): How much to jitter brightness. brightness_factor
    is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
    contrast (float): How much to jitter contrast. contrast_factor
    is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
    saturation (float): How much to jitter saturation. saturation_factor
    is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
    hue(float): How much to jitter hue. hue_factor is chosen uniformly from
    [-hue, hue]. Should be >=0 and <= 0.5.
    """

    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    def __repr__(self):
        return "ColorJitter(%g,%g,%g,%g)" % (
            self.brightness,
            self.contrast,
            self.saturation,
            self.hue,
        )

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.
        Arguments are same as that of __init__.
        Returns:
        Transform which randomly adjusts brightness, contrast and
        saturation in a random order.
        """
        transforms = []
        if brightness > 0:
            brightness_factor = np.random.uniform(
                max(0, 1 - brightness), 1 + brightness
            )
            transforms.append(
                tvf.Lambda(lambda img: F.adjust_brightness(img, brightness_factor))
            )

        if contrast > 0:
            contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
            transforms.append(
                tvf.Lambda(lambda img: F.adjust_contrast(img, contrast_factor))
            )

        if saturation > 0:
            saturation_factor = np.random.uniform(
                max(0, 1 - saturation), 1 + saturation
            )
            transforms.append(
                tvf.Lambda(lambda img: F.adjust_saturation(img, saturation_factor))
            )

        if hue > 0:
            hue_factor = np.random.uniform(-hue, hue)
            transforms.append(tvf.Lambda(lambda img: F.adjust_hue(img, hue_factor)))

        # print('colorjitter: ', brightness_factor, contrast_factor, saturation_factor, hue_factor) # to debug random seed

        np.random.shuffle(transforms)
        transform = tvf.Compose(transforms)

        return transform

    def _transform(self, img):
        transform = self.get_params(
            self.brightness, self.contrast, self.saturation, self.hue
        )
        return transform(img)


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser("Script to try out and visualize transformations")
    parser.add_argument("--img", type=str, default="imgs/test.png", help="input image")
    parser.add_argument(
        "--trfs", type=str, required=True, help="list of transformations"
    )
    parser.add_argument(
        "--layout", type=int, nargs=2, default=(3, 3), help="nb of rows,cols"
    )
    args = parser.parse_args()

    import os

    args.img = args.img.replace("$HERE", os.path.dirname(__file__))
    img = Image.open(args.img)
    img = dict(img=img)

    trfs = instanciate_transformation(args.trfs)

    from matplotlib import pyplot as pl

    pl.ion()
    pl.subplots_adjust(0, 0, 1, 1)

    nr, nc = args.layout

    while True:
        for j in range(nr):
            for i in range(nc):
                pl.subplot(nr, nc, i + j * nc + 1)
                if i == j == 0:
                    img2 = img
                else:
                    img2 = trfs(img.copy())
                if isinstance(img2, dict):
                    img2 = img2["img"]
                pl.imshow(img2)
                pl.xlabel("%d x %d" % img2.size)
                pl.xticks(())
                pl.yticks(())
        pdb.set_trace()