Spaces:
Running
Running
File size: 7,489 Bytes
e02ffe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
from yacs.config import CfgNode as CN
_CN = CN()
############## ↓ LoFTR Pipeline ↓ ##############
_CN.LOFTR = CN()
_CN.LOFTR.BACKBONE_TYPE = 'RepVGG'
_CN.LOFTR.ALIGN_CORNER = False
_CN.LOFTR.RESOLUTION = (8, 1)
_CN.LOFTR.FINE_WINDOW_SIZE = 8 # window_size in fine_level, must be even
_CN.LOFTR.MP = False
_CN.LOFTR.REPLACE_NAN = False
_CN.LOFTR.EVAL_TIMES = 1
_CN.LOFTR.HALF = False
# 1. LoFTR-backbone (local feature CNN) config
_CN.LOFTR.BACKBONE = CN()
_CN.LOFTR.BACKBONE.BLOCK_DIMS = [64, 128, 256] # s1, s2, s3
# 2. LoFTR-coarse module config
_CN.LOFTR.COARSE = CN()
_CN.LOFTR.COARSE.D_MODEL = 256
_CN.LOFTR.COARSE.D_FFN = 256
_CN.LOFTR.COARSE.NHEAD = 8
_CN.LOFTR.COARSE.LAYER_NAMES = ['self', 'cross'] * 4
_CN.LOFTR.COARSE.AGG_SIZE0 = 4
_CN.LOFTR.COARSE.AGG_SIZE1 = 4
_CN.LOFTR.COARSE.NO_FLASH = False
_CN.LOFTR.COARSE.ROPE = True
_CN.LOFTR.COARSE.NPE = None # [832, 832, long_side, long_side] Suggest setting based on the long side of the input image, especially when the long_side > 832
# 3. Coarse-Matching config
_CN.LOFTR.MATCH_COARSE = CN()
_CN.LOFTR.MATCH_COARSE.THR = 0.2 # recommend 0.2 for full model and 25 for optimized model
_CN.LOFTR.MATCH_COARSE.BORDER_RM = 2
_CN.LOFTR.MATCH_COARSE.DSMAX_TEMPERATURE = 0.1
_CN.LOFTR.MATCH_COARSE.TRAIN_COARSE_PERCENT = 0.2 # training tricks: save GPU memory
_CN.LOFTR.MATCH_COARSE.TRAIN_PAD_NUM_GT_MIN = 200 # training tricks: avoid DDP deadlock
_CN.LOFTR.MATCH_COARSE.SPARSE_SPVS = True
_CN.LOFTR.MATCH_COARSE.SKIP_SOFTMAX = False
_CN.LOFTR.MATCH_COARSE.FP16MATMUL = False
# 4. Fine-Matching config
_CN.LOFTR.MATCH_FINE = CN()
_CN.LOFTR.MATCH_FINE.SPARSE_SPVS = True
_CN.LOFTR.MATCH_FINE.LOCAL_REGRESS_TEMPERATURE = 1.0
_CN.LOFTR.MATCH_FINE.LOCAL_REGRESS_SLICEDIM = 8
# 5. LoFTR Losses
# -- # coarse-level
_CN.LOFTR.LOSS = CN()
_CN.LOFTR.LOSS.COARSE_TYPE = 'focal' # ['focal', 'cross_entropy']
_CN.LOFTR.LOSS.COARSE_WEIGHT = 1.0
_CN.LOFTR.LOSS.COARSE_SIGMOID_WEIGHT = 1.0
_CN.LOFTR.LOSS.LOCAL_WEIGHT = 0.5
_CN.LOFTR.LOSS.COARSE_OVERLAP_WEIGHT = False
_CN.LOFTR.LOSS.FINE_OVERLAP_WEIGHT = False
_CN.LOFTR.LOSS.FINE_OVERLAP_WEIGHT2 = False
# -- - -- # focal loss (coarse)
_CN.LOFTR.LOSS.FOCAL_ALPHA = 0.25
_CN.LOFTR.LOSS.FOCAL_GAMMA = 2.0
_CN.LOFTR.LOSS.POS_WEIGHT = 1.0
_CN.LOFTR.LOSS.NEG_WEIGHT = 1.0
# -- # fine-level
_CN.LOFTR.LOSS.FINE_TYPE = 'l2_with_std' # ['l2_with_std', 'l2']
_CN.LOFTR.LOSS.FINE_WEIGHT = 1.0
_CN.LOFTR.LOSS.FINE_CORRECT_THR = 1.0 # for filtering valid fine-level gts (some gt matches might fall out of the fine-level window)
############## Dataset ##############
_CN.DATASET = CN()
# 1. data config
# training and validating
_CN.DATASET.TRAINVAL_DATA_SOURCE = None # options: ['ScanNet', 'MegaDepth']
_CN.DATASET.TRAIN_DATA_ROOT = None
_CN.DATASET.TRAIN_POSE_ROOT = None # (optional directory for poses)
_CN.DATASET.TRAIN_NPZ_ROOT = None
_CN.DATASET.TRAIN_LIST_PATH = None
_CN.DATASET.TRAIN_INTRINSIC_PATH = None
_CN.DATASET.VAL_DATA_ROOT = None
_CN.DATASET.VAL_POSE_ROOT = None # (optional directory for poses)
_CN.DATASET.VAL_NPZ_ROOT = None
_CN.DATASET.VAL_LIST_PATH = None # None if val data from all scenes are bundled into a single npz file
_CN.DATASET.VAL_INTRINSIC_PATH = None
_CN.DATASET.FP16 = False
# testing
_CN.DATASET.TEST_DATA_SOURCE = None
_CN.DATASET.TEST_DATA_ROOT = None
_CN.DATASET.TEST_POSE_ROOT = None # (optional directory for poses)
_CN.DATASET.TEST_NPZ_ROOT = None
_CN.DATASET.TEST_LIST_PATH = None # None if test data from all scenes are bundled into a single npz file
_CN.DATASET.TEST_INTRINSIC_PATH = None
# 2. dataset config
# general options
_CN.DATASET.MIN_OVERLAP_SCORE_TRAIN = 0.4 # discard data with overlap_score < min_overlap_score
_CN.DATASET.MIN_OVERLAP_SCORE_TEST = 0.0
_CN.DATASET.AUGMENTATION_TYPE = None # options: [None, 'dark', 'mobile']
# scanNet options
_CN.DATASET.SCAN_IMG_RESIZEX = 640 # resize the longer side, zero-pad bottom-right to square.
_CN.DATASET.SCAN_IMG_RESIZEY = 480 # resize the shorter side, zero-pad bottom-right to square.
# MegaDepth options
_CN.DATASET.MGDPT_IMG_RESIZE = 640 # resize the longer side, zero-pad bottom-right to square.
_CN.DATASET.MGDPT_IMG_PAD = True # pad img to square with size = MGDPT_IMG_RESIZE
_CN.DATASET.MGDPT_DEPTH_PAD = True # pad depthmap to square with size = 2000
_CN.DATASET.MGDPT_DF = 8
_CN.DATASET.NPE_NAME = None
############## Trainer ##############
_CN.TRAINER = CN()
_CN.TRAINER.WORLD_SIZE = 1
_CN.TRAINER.CANONICAL_BS = 64
_CN.TRAINER.CANONICAL_LR = 6e-3
_CN.TRAINER.SCALING = None # this will be calculated automatically
_CN.TRAINER.FIND_LR = False # use learning rate finder from pytorch-lightning
# optimizer
_CN.TRAINER.OPTIMIZER = "adamw" # [adam, adamw]
_CN.TRAINER.TRUE_LR = None # this will be calculated automatically at runtime
_CN.TRAINER.ADAM_DECAY = 0. # ADAM: for adam
_CN.TRAINER.ADAMW_DECAY = 0.1
# step-based warm-up
_CN.TRAINER.WARMUP_TYPE = 'linear' # [linear, constant]
_CN.TRAINER.WARMUP_RATIO = 0.
_CN.TRAINER.WARMUP_STEP = 4800
# learning rate scheduler
_CN.TRAINER.SCHEDULER = 'MultiStepLR' # [MultiStepLR, CosineAnnealing, ExponentialLR]
_CN.TRAINER.SCHEDULER_INTERVAL = 'epoch' # [epoch, step]
_CN.TRAINER.MSLR_MILESTONES = [3, 6, 9, 12] # MSLR: MultiStepLR
_CN.TRAINER.MSLR_GAMMA = 0.5
_CN.TRAINER.COSA_TMAX = 30 # COSA: CosineAnnealing
_CN.TRAINER.ELR_GAMMA = 0.999992 # ELR: ExponentialLR, this value for 'step' interval
# plotting related
_CN.TRAINER.ENABLE_PLOTTING = True
_CN.TRAINER.N_VAL_PAIRS_TO_PLOT = 32 # number of val/test paris for plotting
_CN.TRAINER.PLOT_MODE = 'evaluation' # ['evaluation', 'confidence']
_CN.TRAINER.PLOT_MATCHES_ALPHA = 'dynamic'
# geometric metrics and pose solver
_CN.TRAINER.EPI_ERR_THR = 5e-4 # recommendation: 5e-4 for ScanNet, 1e-4 for MegaDepth (from SuperGlue)
_CN.TRAINER.POSE_GEO_MODEL = 'E' # ['E', 'F', 'H']
_CN.TRAINER.POSE_ESTIMATION_METHOD = 'RANSAC' # [RANSAC, LO-RANSAC]
_CN.TRAINER.RANSAC_PIXEL_THR = 0.5
_CN.TRAINER.RANSAC_CONF = 0.99999
_CN.TRAINER.RANSAC_MAX_ITERS = 10000
_CN.TRAINER.USE_MAGSACPP = False
# data sampler for train_dataloader
_CN.TRAINER.DATA_SAMPLER = 'scene_balance' # options: ['scene_balance', 'random', 'normal']
# 'scene_balance' config
_CN.TRAINER.N_SAMPLES_PER_SUBSET = 200
_CN.TRAINER.SB_SUBSET_SAMPLE_REPLACEMENT = True # whether sample each scene with replacement or not
_CN.TRAINER.SB_SUBSET_SHUFFLE = True # after sampling from scenes, whether shuffle within the epoch or not
_CN.TRAINER.SB_REPEAT = 1 # repeat N times for training the sampled data
# 'random' config
_CN.TRAINER.RDM_REPLACEMENT = True
_CN.TRAINER.RDM_NUM_SAMPLES = None
# gradient clipping
_CN.TRAINER.GRADIENT_CLIPPING = 0.5
# reproducibility
# This seed affects the data sampling. With the same seed, the data sampling is promised
# to be the same. When resume training from a checkpoint, it's better to use a different
# seed, otherwise the sampled data will be exactly the same as before resuming, which will
# cause less unique data items sampled during the entire training.
# Use of different seed values might affect the final training result, since not all data items
# are used during training on ScanNet. (60M pairs of images sampled during traing from 230M pairs in total.)
_CN.TRAINER.SEED = 66
def get_cfg_defaults():
"""Get a yacs CfgNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return _CN.clone()
|