File size: 14,131 Bytes
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
"""
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
#  Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
#  Unpublished Copyright (c) 2020
#  Magic Leap, Inc., All Rights Reserved.
#
# NOTICE:  All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law.  Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY.  Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure  of  this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of  COMPANY.   ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC  PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE  OF THIS
# SOURCE CODE  WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES.  THE RECEIPT OR POSSESSION OF  THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT  MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
#  Originating Authors: Paul-Edouard Sarlin
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%

Described in:
    SuperPoint: Self-Supervised Interest Point Detection and Description,
    Daniel DeTone, Tomasz Malisiewicz, Andrew Rabinovich, CVPRW 2018.

Original code: github.com/MagicLeapResearch/SuperPointPretrainedNetwork

Adapted by Philipp Lindenberger (Phil26AT)
"""
import os.path

import torch
from torch import nn

from gluefactory.models.base_model import BaseModel
from gluefactory.models.utils.misc import pad_and_stack


def simple_nms(scores, radius):
    """Perform non maximum suppression on the heatmap using max-pooling.
    This method does not suppress contiguous points that have the same score.
    Args:
        scores: the score heatmap of size `(B, H, W)`.
        radius: an integer scalar, the radius of the NMS window.
    """

    def max_pool(x):
        return torch.nn.functional.max_pool2d(
            x, kernel_size=radius * 2 + 1, stride=1, padding=radius
        )

    zeros = torch.zeros_like(scores)
    max_mask = scores == max_pool(scores)
    for _ in range(2):
        supp_mask = max_pool(max_mask.float()) > 0
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == max_pool(supp_scores)
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


def top_k_keypoints(keypoints, scores, k):
    if k >= len(keypoints):
        return keypoints, scores
    scores, indices = torch.topk(scores, k, dim=0, sorted=True)
    return keypoints[indices], scores


def sample_k_keypoints(keypoints, scores, k):
    if k >= len(keypoints):
        return keypoints, scores
    indices = torch.multinomial(scores, k, replacement=False)
    return keypoints[indices], scores[indices]


def soft_argmax_refinement(keypoints, scores, radius: int):
    width = 2 * radius + 1
    sum_ = torch.nn.functional.avg_pool2d(
        scores[:, None], width, 1, radius, divisor_override=1
    )
    ar = torch.arange(-radius, radius + 1).to(scores)
    kernel_x = ar[None].expand(width, -1)[None, None]
    dx = torch.nn.functional.conv2d(scores[:, None], kernel_x, padding=radius)
    dy = torch.nn.functional.conv2d(
        scores[:, None], kernel_x.transpose(2, 3), padding=radius
    )
    dydx = torch.stack([dy[:, 0], dx[:, 0]], -1) / sum_[:, 0, :, :, None]
    refined_keypoints = []
    for i, kpts in enumerate(keypoints):
        delta = dydx[i][tuple(kpts.t())]
        refined_keypoints.append(kpts.float() + delta)
    return refined_keypoints


# Legacy (broken) sampling of the descriptors
def sample_descriptors(keypoints, descriptors, s):
    b, c, h, w = descriptors.shape
    keypoints = keypoints - s / 2 + 0.5
    keypoints /= torch.tensor(
        [(w * s - s / 2 - 0.5), (h * s - s / 2 - 0.5)],
    ).to(
        keypoints
    )[None]
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    args = {"align_corners": True} if torch.__version__ >= "1.3" else {}
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", **args
    )
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1
    )
    return descriptors


# The original keypoint sampling is incorrect. We patch it here but
# keep the original one above for legacy.
def sample_descriptors_fix_sampling(keypoints, descriptors, s: int = 8):
    """Interpolate descriptors at keypoint locations"""
    b, c, h, w = descriptors.shape
    keypoints = keypoints / (keypoints.new_tensor([w, h]) * s)
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
    )
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1
    )
    return descriptors


class SuperPoint(BaseModel):
    default_conf = {
        "has_detector": True,
        "has_descriptor": True,
        "descriptor_dim": 256,
        # Inference
        "sparse_outputs": True,
        "dense_outputs": False,
        "nms_radius": 4,
        "refinement_radius": 0,
        "detection_threshold": 0.005,
        "max_num_keypoints": -1,
        "max_num_keypoints_val": None,
        "force_num_keypoints": False,
        "randomize_keypoints_training": False,
        "remove_borders": 4,
        "legacy_sampling": True,  # True to use the old broken sampling
    }
    required_data_keys = ["image"]

    checkpoint_url = "https://github.com/magicleap/SuperGluePretrainedNetwork/raw/master/models/weights/superpoint_v1.pth"  # noqa: E501

    def _init(self, conf):
        self.relu = nn.ReLU(inplace=True)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
        c1, c2, c3, c4, c5 = 64, 64, 128, 128, 256

        self.conv1a = nn.Conv2d(1, c1, kernel_size=3, stride=1, padding=1)
        self.conv1b = nn.Conv2d(c1, c1, kernel_size=3, stride=1, padding=1)
        self.conv2a = nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1)
        self.conv2b = nn.Conv2d(c2, c2, kernel_size=3, stride=1, padding=1)
        self.conv3a = nn.Conv2d(c2, c3, kernel_size=3, stride=1, padding=1)
        self.conv3b = nn.Conv2d(c3, c3, kernel_size=3, stride=1, padding=1)
        self.conv4a = nn.Conv2d(c3, c4, kernel_size=3, stride=1, padding=1)
        self.conv4b = nn.Conv2d(c4, c4, kernel_size=3, stride=1, padding=1)

        if conf.has_detector:
            self.convPa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
            self.convPb = nn.Conv2d(c5, 65, kernel_size=1, stride=1, padding=0)
            for param in self.convPa.parameters():
                param.requires_grad = False
            for param in self.convPb.parameters():
                param.requires_grad = False

        if conf.has_descriptor:
            self.convDa = nn.Conv2d(c4, c5, kernel_size=3, stride=1, padding=1)
            self.convDb = nn.Conv2d(
                c5, conf.descriptor_dim, kernel_size=1, stride=1, padding=0
            )

        self.load_state_dict(torch.load(os.path.join('weights', 'superpoint_v1.pth')))

    def _forward(self, data):
        image = data["image"]
        if image.shape[1] == 3:  # RGB
            scale = image.new_tensor([0.299, 0.587, 0.114]).view(1, 3, 1, 1)
            image = (image * scale).sum(1, keepdim=True)

        # Shared Encoder
        x = self.relu(self.conv1a(image))
        x = self.relu(self.conv1b(x))
        x = self.pool(x)
        x = self.relu(self.conv2a(x))
        x = self.relu(self.conv2b(x))
        x = self.pool(x)
        x = self.relu(self.conv3a(x))
        x = self.relu(self.conv3b(x))
        x = self.pool(x)
        x = self.relu(self.conv4a(x))
        x = self.relu(self.conv4b(x))

        pred = {}
        if self.conf.has_detector:
            # Compute the dense keypoint scores
            cPa = self.relu(self.convPa(x))
            scores = self.convPb(cPa)
            scores = torch.nn.functional.softmax(scores, 1)[:, :-1]
            b, c, h, w = scores.shape
            scores = scores.permute(0, 2, 3, 1).reshape(b, h, w, 8, 8)
            scores = scores.permute(0, 1, 3, 2, 4).reshape(b, h * 8, w * 8)
            pred["keypoint_scores"] = dense_scores = scores
        if self.conf.has_descriptor:
            # Compute the dense descriptors
            cDa = self.relu(self.convDa(x))
            dense_desc = self.convDb(cDa)
            dense_desc = torch.nn.functional.normalize(dense_desc, p=2, dim=1)
            pred["descriptors"] = dense_desc

        if self.conf.sparse_outputs:
            assert self.conf.has_detector and self.conf.has_descriptor

            scores = simple_nms(scores, self.conf.nms_radius)

            # Discard keypoints near the image borders
            if self.conf.remove_borders:
                scores[:, : self.conf.remove_borders] = -1
                scores[:, :, : self.conf.remove_borders] = -1
                if "image_size" in data:
                    for i in range(scores.shape[0]):
                        w, h = data["image_size"][i]
                        scores[i, int(h.item()) - self.conf.remove_borders :] = -1
                        scores[i, :, int(w.item()) - self.conf.remove_borders :] = -1
                else:
                    scores[:, -self.conf.remove_borders :] = -1
                    scores[:, :, -self.conf.remove_borders :] = -1

            # Extract keypoints
            best_kp = torch.where(scores > self.conf.detection_threshold)
            scores = scores[best_kp]

            # Separate into batches
            keypoints = [
                torch.stack(best_kp[1:3], dim=-1)[best_kp[0] == i] for i in range(b)
            ]
            scores = [scores[best_kp[0] == i] for i in range(b)]

            # Keep the k keypoints with highest score
            max_kps = self.conf.max_num_keypoints

            # for val we allow different
            if not self.training and self.conf.max_num_keypoints_val is not None:
                max_kps = self.conf.max_num_keypoints_val

            # Keep the k keypoints with highest score
            if max_kps > 0:
                if self.conf.randomize_keypoints_training and self.training:
                    # instead of selecting top-k, sample k by score weights
                    keypoints, scores = list(
                        zip(
                            *[
                                sample_k_keypoints(k, s, max_kps)
                                for k, s in zip(keypoints, scores)
                            ]
                        )
                    )
                else:
                    keypoints, scores = list(
                        zip(
                            *[
                                top_k_keypoints(k, s, max_kps)
                                for k, s in zip(keypoints, scores)
                            ]
                        )
                    )
                keypoints, scores = list(keypoints), list(scores)

            if self.conf["refinement_radius"] > 0:
                keypoints = soft_argmax_refinement(
                    keypoints, dense_scores, self.conf["refinement_radius"]
                )

            # Convert (h, w) to (x, y)
            keypoints = [torch.flip(k, [1]).float() for k in keypoints]

            if self.conf.force_num_keypoints:
                keypoints = pad_and_stack(
                    keypoints,
                    max_kps,
                    -2,
                    mode="random_c",
                    bounds=(
                        0,
                        data.get("image_size", torch.tensor(image.shape[-2:]))
                        .min()
                        .item(),
                    ),
                )
                scores = pad_and_stack(scores, max_kps, -1, mode="zeros")
            else:
                keypoints = torch.stack(keypoints, 0)
                scores = torch.stack(scores, 0)

            # Extract descriptors
            if (len(keypoints) == 1) or self.conf.force_num_keypoints:
                # Batch sampling of the descriptors
                if self.conf.legacy_sampling:
                    desc = sample_descriptors(keypoints, dense_desc, 8)
                else:
                    desc = sample_descriptors_fix_sampling(keypoints, dense_desc, 8)
            else:
                if self.conf.legacy_sampling:
                    desc = [
                        sample_descriptors(k[None], d[None], 8)[0]
                        for k, d in zip(keypoints, dense_desc)
                    ]
                else:
                    desc = [
                        sample_descriptors_fix_sampling(k[None], d[None], 8)[0]
                        for k, d in zip(keypoints, dense_desc)
                    ]

            pred = {
                "keypoints": keypoints + 0.5,
                "descriptors": desc.transpose(-1, -2),
            }

            if self.conf.dense_outputs:
                pred["dense_descriptors"] = dense_desc

        return pred

    def loss(self, pred, data):
        raise NotImplementedError

    def metrics(self, pred, data):
        raise NotImplementedError