File size: 7,668 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> frame
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   01/03/2024 10:08
=================================================='''
from collections import defaultdict

import numpy as np
import torch
import pycolmap

from localization.camera import Camera
from localization.utils import compute_pose_error


class Frame:
    def __init__(self, image: np.ndarray, camera: pycolmap.Camera, id: int, name: str = None, qvec=None, tvec=None,
                 scene_name=None,
                 reference_frame_id=None):
        self.image = image
        self.camera = camera
        self.id = id
        self.name = name
        self.image_size = np.array([camera.height, camera.width])
        self.qvec = qvec
        self.tvec = tvec
        self.scene_name = scene_name
        self.reference_frame_id = reference_frame_id

        self.keypoints = None  # [N, 3]
        self.descriptors = None  # [N, D]
        self.segmentations = None  # [N C]
        self.seg_scores = None  # [N C]
        self.seg_ids = None  # [N, 1]
        self.point3D_ids = None  # [N, 1]
        self.xyzs = None

        self.gt_qvec = None
        self.gt_tvec = None

        self.matched_scene_name = None
        self.matched_keypoints = None
        self.matched_keypoint_ids = None
        self.matched_xyzs = None
        self.matched_point3D_ids = None
        self.matched_inliers = None
        self.matched_sids = None
        self.matched_order = None

        self.refinement_reference_frame_ids = None
        self.image_rec = None
        self.image_matching = None
        self.image_inlier = None
        self.reference_frame_name = None
        self.image_matching_tmp = None
        self.image_inlier_tmp = None
        self.reference_frame_name_tmp = None

        self.tracking_status = None

        self.time_feat = 0
        self.time_rec = 0
        self.time_loc = 0
        self.time_ref = 0

    def update_point3ds_old(self):
        pt = torch.from_numpy(self.keypoints[:, :2]).unsqueeze(-1)  # [M 2 1]
        mpt = torch.from_numpy(self.matched_keypoints[:, :2].transpose()).unsqueeze(0)  # [1 2 N]
        dist = torch.sqrt(torch.sum((pt - mpt) ** 2, dim=1))
        values, ids = torch.topk(dist, dim=1, k=1, largest=False)
        values = values[:, 0].numpy()
        ids = ids[:, 0].numpy()
        mask = (values < 1)  # 1 pixel error
        self.point3D_ids = np.zeros(shape=(self.keypoints.shape[0],), dtype=int) - 1
        self.point3D_ids[mask] = self.matched_point3D_ids[ids[mask]]

        # self.xyzs = np.zeros(shape=(self.keypoints.shape[0], 3), dtype=float)
        inlier_mask = self.matched_inliers
        self.xyzs[mask] = self.matched_xyzs[ids[mask]]
        self.seg_ids[mask] = self.matched_sids[ids[mask]]

    def update_point3ds(self):
        # print('Frame: update_point3ds: ', self.matched_keypoint_ids.shape, self.matched_xyzs.shape,
        #       self.matched_sids.shape, self.matched_point3D_ids.shape)
        self.xyzs[self.matched_keypoint_ids] = self.matched_xyzs
        self.seg_ids[self.matched_keypoint_ids] = self.matched_sids
        self.point3D_ids[self.matched_keypoint_ids] = self.matched_point3D_ids

    def add_keypoints(self, keypoints: np.ndarray, descriptors: np.ndarray):
        self.keypoints = keypoints
        self.descriptors = descriptors
        self.initialize_localization_variables()

    def add_segmentations(self, segmentations: torch.Tensor, filtering_threshold: float):
        '''
        :param segmentations: [number_points number_labels]
        :return:
        '''
        seg_scores = torch.softmax(segmentations, dim=-1)
        if filtering_threshold > 0:
            scores_background = seg_scores[:, 0]
            non_bg_mask = (scores_background < filtering_threshold)
            print('pre filtering before: ', self.keypoints.shape)
            if torch.sum(non_bg_mask) >= 0.4 * seg_scores.shape[0]:
                self.keypoints = self.keypoints[non_bg_mask.cpu().numpy()]
                self.descriptors = self.descriptors[non_bg_mask.cpu().numpy()]
                # print('pre filtering after: ', self.keypoints.shape)

                # update localization variables
                self.initialize_localization_variables()

                segmentations = segmentations[non_bg_mask]
                seg_scores = seg_scores[non_bg_mask]
            print('pre filtering after: ', self.keypoints.shape)

        # extract initial segmentation info
        self.segmentations = segmentations.cpu().numpy()
        self.seg_scores = seg_scores.cpu().numpy()
        self.seg_ids = segmentations.max(dim=-1)[1].cpu().numpy() - 1  # should start from 0

    def filter_keypoints(self, seg_scores: np.ndarray, filtering_threshold: float):
        scores_background = seg_scores[:, 0]
        non_bg_mask = (scores_background < filtering_threshold)
        print('pre filtering before: ', self.keypoints.shape)
        if np.sum(non_bg_mask) >= 0.4 * seg_scores.shape[0]:
            self.keypoints = self.keypoints[non_bg_mask]
            self.descriptors = self.descriptors[non_bg_mask]
            print('pre filtering after: ', self.keypoints.shape)

            # update localization variables
            self.initialize_localization_variables()
            return non_bg_mask
        else:
            print('pre filtering after: ', self.keypoints.shape)
            return None

    def compute_pose_error(self, pred_qvec=None, pred_tvec=None):
        if pred_qvec is not None and pred_tvec is not None:
            if self.gt_qvec is not None and self.gt_tvec is not None:
                return compute_pose_error(pred_qcw=pred_qvec, pred_tcw=pred_tvec,
                                          gt_qcw=self.gt_qvec, gt_tcw=self.gt_tvec)
            else:
                return 100, 100

        if self.qvec is None or self.tvec is None or self.gt_qvec is None or self.gt_tvec is None:
            return 100, 100
        else:
            err_q, err_t = compute_pose_error(pred_qcw=self.qvec, pred_tcw=self.tvec,
                                              gt_qcw=self.gt_qvec, gt_tcw=self.gt_tvec)
            return err_q, err_t

    def get_intrinsics(self) -> np.ndarray:
        camera_model = self.camera.model.name
        params = self.camera.params
        if camera_model in ("SIMPLE_PINHOLE", "SIMPLE_RADIAL", "RADIAL"):
            fx = fy = params[0]
            cx = params[1]
            cy = params[2]
        elif camera_model in ("PINHOLE", "OPENCV", "OPENCV_FISHEYE", "FULL_OPENCV"):
            fx = params[0]
            fy = params[1]
            cx = params[2]
            cy = params[3]
        else:
            raise Exception("Camera model not supported")

        # intrinsics
        K = np.identity(3)
        K[0, 0] = fx
        K[1, 1] = fy
        K[0, 2] = cx
        K[1, 2] = cy
        return K

    def get_dominate_seg_id(self):
        counts = np.bincount(self.seg_ids[self.seg_ids > 0])
        return np.argmax(counts)

    def clear_localization_track(self):
        self.matched_scene_name = None
        self.matched_keypoints = None
        self.matched_xyzs = None
        self.matched_point3D_ids = None
        self.matched_inliers = None
        self.matched_sids = None

        self.refinement_reference_frame_ids = None

    def initialize_localization_variables(self):
        nkpt = self.keypoints.shape[0]
        self.seg_ids = np.zeros(shape=(nkpt,), dtype=int) - 1
        self.point3D_ids = np.zeros(shape=(nkpt,), dtype=int) - 1
        self.xyzs = np.zeros(shape=(nkpt, 3), dtype=float)