File size: 11,325 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> loc_by_rec
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   08/02/2024 15:26
=================================================='''
import torch
import pycolmap
from localization.multimap3d import MultiMap3D
from localization.frame import Frame
import yaml, cv2, time
import numpy as np
import os.path as osp
import threading
from recognition.vis_seg import vis_seg_point, generate_color_dic
from tools.common import resize_img
from localization.viewer import Viewer
from localization.tracker import Tracker
from localization.utils import read_query_info
from tools.common import puttext_with_background


def loc_by_rec_online(rec_model, config, local_feat, img_transforms=None):
    seg_color = generate_color_dic(n_seg=2000)
    dataset_path = config['dataset_path']
    show = config['localization']['show']
    if show:
        cv2.namedWindow('img', cv2.WINDOW_NORMAL)

    locMap = MultiMap3D(config=config, save_dir=None)
    if config['dataset'][0] in ['Aachen']:
        viewer_config = {'scene': 'outdoor',
                         'image_size_indoor': 4,
                         'image_line_width_indoor': 8, }
    elif config['dataset'][0] in ['C']:
        viewer_config = {'scene': 'outdoor'}
    elif config['dataset'][0] in ['12Scenes', '7Scenes']:
        viewer_config = {'scene': 'indoor', }
    else:
        viewer_config = {'scene': 'outdoor',
                         'image_size_indoor': 0.4,
                         'image_line_width_indoor': 2, }
    # start viewer
    mViewer = Viewer(locMap=locMap, seg_color=seg_color, config=viewer_config)
    mViewer.refinement = locMap.do_refinement
    # locMap.viewer = mViewer
    viewer_thread = threading.Thread(target=mViewer.run)
    viewer_thread.start()

    # start tracker
    mTracker = Tracker(locMap=locMap, matcher=locMap.matcher, config=config)

    dataset_name = config['dataset'][0]
    all_scene_query_info = {}
    with open(osp.join(config['config_path'], '{:s}.yaml'.format(dataset_name)), 'r') as f:
        scene_config = yaml.load(f, Loader=yaml.Loader)

    # multiple scenes in a single dataset
    err_ths_cnt = [0, 0, 0, 0]

    show_time = -1
    scenes = scene_config['scenes']
    n_total = 0
    for scene in scenes:
        if len(config['localization']['loc_scene_name']) > 0:
            if scene not in config['localization']['loc_scene_name']:
                continue

        query_path = osp.join(config['dataset_path'], dataset_name, scene, scene_config[scene]['query_path'])
        query_info = read_query_info(query_fn=query_path)
        all_scene_query_info[dataset_name + '/' + scene] = query_info
        image_path = osp.join(dataset_path, dataset_name, scene)
        for fn in sorted(query_info.keys()):
            # for fn in sorted(query_info.keys())[880:][::5]:  # darwinRGB-loc-outdoor-aligned
            # for fn in sorted(query_info.keys())[3161:][::5]:  # darwinRGB-loc-indoor-aligned
            #     for fn in sorted(query_info.keys())[2840:][::5]:  # darwinRGB-loc-indoor-aligned

            # for fn in sorted(query_info.keys())[2100:][::5]: # darwinRGB-loc-outdoor
            # for fn in sorted(query_info.keys())[4360:][::5]:  # darwinRGB-loc-indoor
            # for fn in sorted(query_info.keys())[1380:]:  # Cam-Church
            # for fn in sorted(query_info.keys())[::5]: #ACUED-test2
            # for fn in sorted(query_info.keys())[1260:]:  # jesus aligned
            # for fn in sorted(query_info.keys())[1260:]:  # jesus aligned
            # for fn in sorted(query_info.keys())[4850:]:
            img = cv2.imread(osp.join(image_path, fn))  # BGR

            camera_model, width, height, params = all_scene_query_info[dataset_name + '/' + scene][fn]
            # camera = Camera(id=-1, model=camera_model, width=width, height=height, params=params)
            camera = pycolmap.Camera(model=camera_model, width=int(width), height=int(height), params=params)
            curr_frame = Frame(image=img, camera=camera, id=0, name=fn, scene_name=dataset_name + '/' + scene)
            gt_sub_map = locMap.sub_maps[curr_frame.scene_name]
            if gt_sub_map.gt_poses is not None and curr_frame.name in gt_sub_map.gt_poses.keys():
                curr_frame.gt_qvec = gt_sub_map.gt_poses[curr_frame.name]['qvec']
                curr_frame.gt_tvec = gt_sub_map.gt_poses[curr_frame.name]['tvec']

            with torch.no_grad():
                if config['image_dim'] == 1:
                    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                    img_cuda = torch.from_numpy(img_gray / 255)[None].cuda().float()
                else:
                    img_cuda = torch.from_numpy(img / 255).permute(2, 0, 1).cuda().float()
                if img_transforms is not None:
                    img_cuda = img_transforms(img_cuda)[None]
                else:
                    img_cuda = img_cuda[None]

                t_start = time.time()
                encoder_out = local_feat.extract_local_global(data={'image': img_cuda},
                                                              config={'min_keypoints': 128,
                                                                      'max_keypoints': config['eval_max_keypoints'],
                                                                      }
                                                              )
                t_feat = time.time() - t_start
                # global_descriptors_cuda = encoder_out['global_descriptors']
                scores_cuda = encoder_out['scores'][0][None]
                kpts_cuda = encoder_out['keypoints'][0][None]
                descriptors_cuda = encoder_out['descriptors'][0][None].permute(0, 2, 1)

                curr_frame.add_keypoints(keypoints=np.hstack([kpts_cuda[0].cpu().numpy(),
                                                              scores_cuda[0].cpu().numpy().reshape(-1, 1)]),
                                         descriptors=descriptors_cuda[0].cpu().numpy())
                curr_frame.time_feat = t_feat

                t_start = time.time()
                _, seg_descriptors = local_feat.sample(score_map=encoder_out['score_map'],
                                                       semi_descs=encoder_out['mid_features'],
                                                       kpts=kpts_cuda[0],
                                                       norm_desc=config['norm_desc'])
                rec_out = rec_model({'scores': scores_cuda,
                                     'seg_descriptors': seg_descriptors[None].permute(0, 2, 1),
                                     'keypoints': kpts_cuda,
                                     'image': img_cuda})
                t_rec = time.time() - t_start
                curr_frame.time_rec = t_rec

                pred = {
                    'scores': scores_cuda,
                    'keypoints': kpts_cuda,
                    'descriptors': descriptors_cuda,
                    # 'global_descriptors': global_descriptors_cuda,
                    'image_size': np.array([img.shape[1], img.shape[0]])[None],
                }

                pred = {**pred, **rec_out}
                pred_seg = torch.max(pred['prediction'], dim=2)[1]  # [B, N, C]

                pred_seg = pred_seg[0].cpu().numpy()
                kpts = kpts_cuda[0].cpu().numpy()
                segmentations = pred['prediction'][0]  # .cpu().numpy()  # [N, C]
                curr_frame.add_segmentations(segmentations=segmentations,
                                             filtering_threshold=config['localization']['pre_filtering_th'])

                img_pred_seg = vis_seg_point(img=img, kpts=curr_frame.keypoints,
                                             segs=curr_frame.seg_ids + 1, seg_color=seg_color, radius=9)
                show_text = 'kpts: {:d}'.format(kpts.shape[0])
                img_pred_seg = cv2.putText(img=img_pred_seg,
                                           text=show_text,
                                           org=(50, 30),
                                           fontFace=cv2.FONT_HERSHEY_SIMPLEX,
                                           fontScale=1, color=(0, 0, 255),
                                           thickness=2, lineType=cv2.LINE_AA)
                curr_frame.image_rec = img_pred_seg

                if show:
                    img_text = puttext_with_background(image=img, text='Press C - continue | S - pause | Q - exit',
                                                       org=(30, 50),
                                                       bg_color=(255, 255, 255),
                                                       text_color=(0, 0, 255),
                                                       fontScale=1, thickness=2)
                    cv2.imshow('img', img_text)
                    key = cv2.waitKey(show_time)
                    if key == ord('q'):
                        exit(0)
                    elif key == ord('s'):
                        show_time = -1
                    elif key == ord('c'):
                        show_time = 1

                # Step1: do tracker first
                success = not mTracker.lost and mViewer.tracking
                if success:
                    success = mTracker.run(frame=curr_frame)
                    if success:
                        mViewer.update(curr_frame=curr_frame)

                if not success:
                    # success = locMap.run(q_frame=curr_frame, q_segs=segmentations)
                    success = locMap.run(q_frame=curr_frame)
                    if success:
                        mViewer.update(curr_frame=curr_frame)

                if success:
                    curr_frame.update_point3ds()
                    if mViewer.tracking:
                        mTracker.lost = False
                        mTracker.last_frame = curr_frame

                time.sleep(50 / 1000)
                locMap.do_refinement = mViewer.refinement

                n_total = n_total + 1
                q_err, t_err = curr_frame.compute_pose_error()
                if q_err <= 5 and t_err <= 0.05:
                    err_ths_cnt[0] = err_ths_cnt[0] + 1
                if q_err <= 2 and t_err <= 0.25:
                    err_ths_cnt[1] = err_ths_cnt[1] + 1
                if q_err <= 5 and t_err <= 0.5:
                    err_ths_cnt[2] = err_ths_cnt[2] + 1
                if q_err <= 10 and t_err <= 5:
                    err_ths_cnt[3] = err_ths_cnt[3] + 1
                time_total = curr_frame.time_feat + curr_frame.time_rec + curr_frame.time_loc + curr_frame.time_ref
                print_text = 'qname: {:s} localization {:b}, q_err: {:.2f}, t_err: {:.2f}, {:d}/{:d}/{:d}/{:d}/{:d}, time: {:.2f}/{:.2f}/{:.2f}/{:.2f}/{:.2f}'.format(
                    scene + '/' + fn, success, q_err, t_err,
                    err_ths_cnt[0],
                    err_ths_cnt[1],
                    err_ths_cnt[2],
                    err_ths_cnt[3],
                    n_total,
                    curr_frame.time_feat, curr_frame.time_rec, curr_frame.time_loc, curr_frame.time_ref, time_total
                )
                print(print_text)

    mViewer.terminate()
    viewer_thread.join()