File size: 9,266 Bytes
63f3cf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File   pram -> hloc
@IDE    PyCharm
@Author fx221@cam.ac.uk
@Date   07/02/2024 16:45
=================================================='''

import os
import os.path as osp
from tqdm import tqdm
import argparse
import time
import logging
import h5py
import numpy as np
from pathlib import Path
from colmap_utils.read_write_model import read_model
from colmap_utils.parsers import parse_image_lists_with_intrinsics
# localization
from localization.match_features_batch import confs
from localization.base_model import dynamic_load
from localization import matchers
from localization.utils import compute_pose_error, read_gt_pose, read_retrieval_results
from localization.pose_estimator import pose_estimator_hloc, pose_estimator_iterative


def run(args):
    if args.gt_pose_fn is not None:
        gt_poses = read_gt_pose(path=args.gt_pose_fn)
    else:
        gt_poses = {}
    retrievals = read_retrieval_results(args.retrieval)

    save_root = args.save_root  # path to save
    os.makedirs(save_root, exist_ok=True)
    matcher_name = args.matcher_method  # matching method
    print('matcher: ', confs[args.matcher_method]['model']['name'])
    Model = dynamic_load(matchers, confs[args.matcher_method]['model']['name'])
    matcher = Model(confs[args.matcher_method]['model']).eval().cuda()

    local_feat_name = args.features.as_posix().split("/")[-1].split(".")[0]  # name of local features
    save_fn = '{:s}_{:s}'.format(local_feat_name, matcher_name)
    if args.use_hloc:
        save_fn = 'hloc_' + save_fn
    save_fn = osp.join(save_root, save_fn)

    queries = parse_image_lists_with_intrinsics(args.queries)
    _, db_images, points3D = read_model(str(args.reference_sfm), '.bin')
    db_name_to_id = {image.name: i for i, image in db_images.items()}
    feature_file = h5py.File(args.features, 'r')

    tag = ''
    if args.do_covisible_opt:
        tag = tag + "_o" + str(int(args.obs_thresh)) + 'op' + str(int(args.covisibility_frame))
        tag = tag + "th" + str(int(args.opt_thresh))
        if args.iters > 0:
            tag = tag + "i" + str(int(args.iters))

    log_fn = save_fn + tag
    vis_dir = save_fn + tag
    results = save_fn + tag

    full_log_fn = log_fn + '_full.log'
    loc_log_fn = log_fn + '_loc.npy'
    results = Path(results + '.txt')
    vis_dir = Path(vis_dir)
    if vis_dir is not None:
        Path(vis_dir).mkdir(exist_ok=True)
    print("save_fn: ", log_fn)

    logging.info('Starting localization...')
    poses = {}
    failed_cases = []
    n_total = 0
    n_failed = 0
    full_log_info = ''
    loc_results = {}

    error_ths = ((0.25, 2), (0.5, 5), (5, 10))
    success = [0, 0, 0]
    total_loc_time = []

    for qname, qinfo in tqdm(queries):
        kpq = feature_file[qname]['keypoints'].__array__()
        n_total += 1
        time_start = time.time()

        if qname in retrievals.keys():
            cans = retrievals[qname]
            db_ids = [db_name_to_id[v] for v in cans]
        else:
            cans = []
            db_ids = []
        time_coarse = time.time()

        if args.use_hloc:
            output = pose_estimator_hloc(qname=qname, qinfo=qinfo, db_ids=db_ids, db_images=db_images,
                                         points3D=points3D,
                                         feature_file=feature_file,
                                         thresh=args.ransac_thresh,
                                         image_dir=args.image_dir,
                                         matcher=matcher,
                                         log_info='',
                                         query_img_prefix='',
                                         db_img_prefix='')
        else:  # should be faster and more accurate than hloc
            t_start = time.time()
            output = pose_estimator_iterative(qname=qname,
                                              qinfo=qinfo,
                                              matcher=matcher,
                                              db_ids=db_ids,
                                              db_images=db_images,
                                              points3D=points3D,
                                              feature_file=feature_file,
                                              thresh=args.ransac_thresh,
                                              image_dir=args.image_dir,
                                              do_covisibility_opt=args.do_covisible_opt,
                                              covisibility_frame=args.covisibility_frame,
                                              log_info='',
                                              inlier_th=args.inlier_thresh,
                                              obs_th=args.obs_thresh,
                                              opt_th=args.opt_thresh,
                                              gt_qvec=gt_poses[qname]['qvec'] if qname in gt_poses.keys() else None,
                                              gt_tvec=gt_poses[qname]['tvec'] if qname in gt_poses.keys() else None,
                                              query_img_prefix='',
                                              db_img_prefix='database',
                                              )
        time_full = time.time()

        qvec = output['qvec']
        tvec = output['tvec']
        loc_time = time_full - time_start
        total_loc_time.append(loc_time)

        poses[qname] = (qvec, tvec)
        print_text = "All {:d}/{:d} failed cases, time[cs/fn]: {:.2f}/{:.2f}".format(
            n_failed, n_total,
            time_coarse - time_start,
            time_full - time_coarse,
        )

        if qname in gt_poses.keys():
            gt_qvec = gt_poses[qname]['qvec']
            gt_tvec = gt_poses[qname]['tvec']

            q_error, t_error = compute_pose_error(pred_qcw=qvec, pred_tcw=tvec, gt_qcw=gt_qvec, gt_tcw=gt_tvec)

            for error_idx, th in enumerate(error_ths):
                if t_error <= th[0] and q_error <= th[1]:
                    success[error_idx] += 1
            print_text += (
                ', q_error:{:.2f} t_error:{:.2f} {:d}/{:d}/{:d}/{:d}, time: {:.2f}, {:d}pts'.format(q_error, t_error,
                                                                                                    success[0],
                                                                                                    success[1],
                                                                                                    success[2], n_total,
                                                                                                    loc_time,
                                                                                                    kpq.shape[0]))
        if output['num_inliers'] == 0:
            failed_cases.append(qname)

        loc_results[qname] = {
            'keypoints_query': output['keypoints_query'],
            'points3D_ids': output['points3D_ids'],
        }
        full_log_info = full_log_info + output['log_info']
        full_log_info += (print_text + "\n")
        print(print_text)

    logs_path = f'{results}.failed'
    with open(logs_path, 'w') as f:
        for v in failed_cases:
            print(v)
            f.write(v + "\n")

    logging.info(f'Localized {len(poses)} / {len(queries)} images.')
    logging.info(f'Writing poses to {results}...')
    # logging.info(f'Mean loc time: {np.mean(total_loc_time)}...')
    print('Mean loc time: {:.2f}...'.format(np.mean(total_loc_time)))
    with open(results, 'w') as f:
        for q in poses:
            qvec, tvec = poses[q]
            qvec = ' '.join(map(str, qvec))
            tvec = ' '.join(map(str, tvec))
            name = q
            f.write(f'{name} {qvec} {tvec}\n')

    with open(full_log_fn, 'w') as f:
        f.write(full_log_info)

    np.save(loc_log_fn, loc_results)
    print('Save logs to ', loc_log_fn)
    logging.info('Done!')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--image_dir', type=str, required=True)
    parser.add_argument('--dataset', type=str, required=True)
    parser.add_argument('--reference_sfm', type=Path, required=True)
    parser.add_argument('--queries', type=Path, required=True)
    parser.add_argument('--features', type=Path, required=True)
    parser.add_argument('--ransac_thresh', type=float, default=12)
    parser.add_argument('--covisibility_frame', type=int, default=50)
    parser.add_argument('--do_covisible_opt', action='store_true')
    parser.add_argument('--use_hloc', action='store_true')
    parser.add_argument('--matcher_method', type=str, default="NNM")
    parser.add_argument('--inlier_thresh', type=int, default=50)
    parser.add_argument('--obs_thresh', type=float, default=3)
    parser.add_argument('--opt_thresh', type=float, default=12)
    parser.add_argument('--save_root', type=str, required=True)
    parser.add_argument('--retrieval', type=Path, default=None)
    parser.add_argument('--gt_pose_fn', type=str, default=None)

    args = parser.parse_args()
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    run(args=args)