Spaces:
Running
Running
File size: 17,116 Bytes
63f3cf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
# -*- coding: UTF-8 -*-
'''=================================================
@Project -> File pram -> trainer
@IDE PyCharm
@Author fx221@cam.ac.uk
@Date 29/01/2024 15:04
=================================================='''
import datetime
import os
import os.path as osp
import numpy as np
from pathlib import Path
from tensorboardX import SummaryWriter
from tqdm import tqdm
import torch.optim as optim
import torch.nn.functional as F
import shutil
import torch
from torch.autograd import Variable
from tools.common import save_args_yaml, merge_tags
from tools.metrics import compute_iou, compute_precision, SeqIOU, compute_corr_incorr, compute_seg_loss_weight
from tools.metrics import compute_cls_loss_ce, compute_cls_corr
class Trainer:
def __init__(self, model, train_loader, feat_model=None, eval_loader=None, config=None, img_transforms=None):
self.model = model
self.train_loader = train_loader
self.eval_loader = eval_loader
self.config = config
self.with_aug = self.config['with_aug']
self.with_cls = False # self.config['with_cls']
self.with_sc = False # self.config['with_sc']
self.img_transforms = img_transforms
self.feat_model = feat_model.cuda().eval() if feat_model is not None else None
self.init_lr = self.config['lr']
self.min_lr = self.config['min_lr']
params = [p for p in self.model.parameters() if p.requires_grad]
self.optimizer = optim.AdamW(params=params, lr=self.init_lr)
self.num_epochs = self.config['epochs']
if config['resume_path'] is not None:
log_dir = config['resume_path'].split('/')[-2]
resume_log = torch.load(osp.join(osp.join(config['save_path'], config['resume_path'])), map_location='cpu')
self.epoch = resume_log['epoch'] + 1
if 'iteration' in resume_log.keys():
self.iteration = resume_log['iteration']
else:
self.iteration = len(self.train_loader) * self.epoch
self.min_loss = resume_log['min_loss']
else:
self.iteration = 0
self.epoch = 0
self.min_loss = 1e10
now = datetime.datetime.now()
all_tags = [now.strftime("%Y%m%d_%H%M%S")]
dataset_name = merge_tags(self.config['dataset'], '')
all_tags = all_tags + [self.config['network'], 'L' + str(self.config['layers']),
dataset_name,
str(self.config['feature']), 'B' + str(self.config['batch_size']),
'K' + str(self.config['max_keypoints']), 'od' + str(self.config['output_dim']),
'nc' + str(self.config['n_class'])]
if self.config['use_mid_feature']:
all_tags.append('md')
# if self.with_cls:
# all_tags.append(self.config['cls_loss'])
# if self.with_sc:
# all_tags.append(self.config['sc_loss'])
if self.with_aug:
all_tags.append('A')
all_tags.append(self.config['cluster_method'])
log_dir = merge_tags(tags=all_tags, connection='_')
if config['local_rank'] == 0:
self.save_dir = osp.join(self.config['save_path'], log_dir)
os.makedirs(self.save_dir, exist_ok=True)
print("save_dir: ", self.save_dir)
self.log_file = open(osp.join(self.save_dir, "log.txt"), "a+")
save_args_yaml(args=config, save_path=Path(self.save_dir, "args.yaml"))
self.writer = SummaryWriter(self.save_dir)
self.tag = log_dir
self.do_eval = self.config['do_eval']
if self.do_eval:
self.eval_fun = None
self.seq_metric = SeqIOU(n_class=self.config['n_class'], ignored_sids=[0])
def preprocess_input(self, pred):
for k in pred.keys():
if k.find('name') >= 0:
continue
if k != 'image' and k != 'depth':
if type(pred[k]) == torch.Tensor:
pred[k] = Variable(pred[k].float().cuda())
else:
pred[k] = Variable(torch.stack(pred[k]).float().cuda())
if self.with_aug:
new_scores = []
new_descs = []
global_descs = []
with torch.no_grad():
for i, im in enumerate(pred['image']):
img = torch.from_numpy(im[0]).cuda().float().permute(2, 0, 1)
# img = self.img_transforms(img)[None]
if self.img_transforms is not None:
img = self.img_transforms(img)[None]
else:
img = img[None]
out = self.feat_model.extract_local_global(data={'image': img})
global_descs.append(out['global_descriptors'])
seg_scores, seg_descs = self.feat_model.sample(score_map=out['score_map'],
semi_descs=out['mid_features'] if self.config[
'use_mid_feature'] else out['desc_map'],
kpts=pred['keypoints'][i],
norm_desc=self.config['norm_desc']) # [D, N]
new_scores.append(seg_scores[None])
new_descs.append(seg_descs[None])
pred['global_descriptors'] = global_descs
pred['scores'] = torch.cat(new_scores, dim=0)
pred['seg_descriptors'] = torch.cat(new_descs, dim=0).permute(0, 2, 1) # -> [B, N, D]
def process_epoch(self):
self.model.train()
epoch_cls_losses = []
epoch_seg_losses = []
epoch_losses = []
epoch_acc_corr = []
epoch_acc_incorr = []
epoch_cls_acc = []
epoch_sc_losses = []
for bidx, pred in tqdm(enumerate(self.train_loader), total=len(self.train_loader)):
self.preprocess_input(pred)
if 0 <= self.config['its_per_epoch'] <= bidx:
break
data = self.model(pred)
for k, v in pred.items():
pred[k] = v
pred = {**pred, **data}
seg_loss = compute_seg_loss_weight(pred=pred['prediction'],
target=pred['gt_seg'],
background_id=0,
weight_background=0.1)
acc_corr, acc_incorr = compute_corr_incorr(pred=pred['prediction'],
target=pred['gt_seg'],
ignored_ids=[0])
if self.with_cls:
pred_cls_dist = pred['classification']
gt_cls_dist = pred['gt_cls_dist']
if len(pred_cls_dist.shape) > 2:
gt_cls_dist_full = gt_cls_dist.unsqueeze(-1).repeat(1, 1, pred_cls_dist.shape[-1])
else:
gt_cls_dist_full = gt_cls_dist.unsqueeze(-1)
cls_loss = compute_cls_loss_ce(pred=pred_cls_dist, target=gt_cls_dist_full)
loss = seg_loss + cls_loss
# gt_n_seg = pred['gt_n_seg']
cls_acc = compute_cls_corr(pred=pred_cls_dist.squeeze(-1), target=gt_cls_dist)
else:
loss = seg_loss
cls_loss = torch.zeros_like(seg_loss)
cls_acc = torch.zeros_like(seg_loss)
if self.with_sc:
pass
else:
sc_loss = torch.zeros_like(seg_loss)
epoch_losses.append(loss.item())
epoch_seg_losses.append(seg_loss.item())
epoch_cls_losses.append(cls_loss.item())
epoch_sc_losses.append(sc_loss.item())
epoch_acc_corr.append(acc_corr.item())
epoch_acc_incorr.append(acc_incorr.item())
epoch_cls_acc.append(cls_acc.item())
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.iteration += 1
lr = min(self.config['lr'] * self.config['decay_rate'] ** (self.iteration - self.config['decay_iter']),
self.config['lr'])
if lr < self.min_lr:
lr = self.min_lr
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
if self.config['local_rank'] == 0 and bidx % self.config['log_intervals'] == 0:
print_text = 'Epoch [{:d}/{:d}], Step [{:d}/{:d}/{:d}], Loss [s{:.2f}/c{:.2f}/sc{:.2f}/t{:.2f}], Acc [c{:.2f}/{:.2f}/{:.2f}]'.format(
self.epoch,
self.num_epochs, bidx,
len(self.train_loader),
self.iteration,
seg_loss.item(),
cls_loss.item(),
sc_loss.item(),
loss.item(),
np.mean(epoch_acc_corr),
np.mean(epoch_acc_incorr),
np.mean(epoch_cls_acc)
)
print(print_text)
self.log_file.write(print_text + '\n')
info = {
'lr': lr,
'loss': loss.item(),
'cls_loss': cls_loss.item(),
'sc_loss': sc_loss.item(),
'acc_corr': acc_corr.item(),
'acc_incorr': acc_incorr.item(),
'acc_cls': cls_acc.item(),
}
for k, v in info.items():
self.writer.add_scalar(tag=k, scalar_value=v, global_step=self.iteration)
if self.config['local_rank'] == 0:
print_text = 'Epoch [{:d}/{:d}], AVG Loss [s{:.2f}/c{:.2f}/sc{:.2f}/t{:.2f}], Acc [c{:.2f}/{:.2f}/{:.2f}]\n'.format(
self.epoch,
self.num_epochs,
np.mean(epoch_seg_losses),
np.mean(epoch_cls_losses),
np.mean(epoch_sc_losses),
np.mean(epoch_losses),
np.mean(epoch_acc_corr),
np.mean(epoch_acc_incorr),
np.mean(epoch_cls_acc),
)
print(print_text)
self.log_file.write(print_text + '\n')
self.log_file.flush()
return np.mean(epoch_losses)
def eval_seg(self, loader):
print('Start to do evaluation...')
self.model.eval()
self.seq_metric.clear()
mean_iou_day = []
mean_iou_night = []
mean_prec_day = []
mean_prec_night = []
mean_cls_day = []
mean_cls_night = []
for bid, pred in tqdm(enumerate(loader), total=len(loader)):
for k in pred.keys():
if k.find('name') >= 0:
continue
if k != 'image' and k != 'depth':
if type(pred[k]) == torch.Tensor:
pred[k] = Variable(pred[k].float().cuda())
elif type(pred[k]) == np.ndarray:
pred[k] = Variable(torch.from_numpy(pred[k]).float()[None].cuda())
else:
pred[k] = Variable(torch.stack(pred[k]).float().cuda())
if self.with_aug:
with torch.no_grad():
if isinstance(pred['image'][0], list):
img = pred['image'][0][0]
else:
img = pred['image'][0]
img = torch.from_numpy(img).cuda().float().permute(2, 0, 1)
if self.img_transforms is not None:
img = self.img_transforms(img)[None]
else:
img = img[None]
encoder_out = self.feat_model.extract_local_global(data={'image': img})
global_descriptors = [encoder_out['global_descriptors']]
pred['global_descriptors'] = global_descriptors
if self.config['use_mid_feature']:
scores, descs = self.feat_model.sample(score_map=encoder_out['score_map'],
semi_descs=encoder_out['mid_features'],
kpts=pred['keypoints'][0],
norm_desc=self.config['norm_desc'])
# print('eval: ', scores.shape, descs.shape)
pred['scores'] = scores[None]
pred['seg_descriptors'] = descs[None].permute(0, 2, 1) # -> [B, N, D]
else:
pred['seg_descriptors'] = pred['descriptors']
image_name = pred['file_name'][0]
with torch.no_grad():
out = self.model(pred)
pred = {**pred, **out}
pred_seg = torch.max(pred['prediction'], dim=-1)[1] # [B, N, C]
pred_seg = pred_seg[0].cpu().numpy()
gt_seg = pred['gt_seg'][0].cpu().numpy()
iou = compute_iou(pred=pred_seg, target=gt_seg, n_class=self.config['n_class'], ignored_ids=[0])
prec = compute_precision(pred=pred_seg, target=gt_seg, ignored_ids=[0])
if self.with_cls:
pred_cls_dist = pred['classification']
gt_cls_dist = pred['gt_cls_dist']
cls_acc = compute_cls_corr(pred=pred_cls_dist.squeeze(-1), target=gt_cls_dist).item()
else:
cls_acc = 0.
if image_name.find('night') >= 0:
mean_iou_night.append(iou)
mean_prec_night.append(prec)
mean_cls_night.append(cls_acc)
else:
mean_iou_day.append(iou)
mean_prec_day.append(prec)
mean_cls_day.append(cls_acc)
print_txt = 'Eval Epoch {:d}, iou day/night {:.3f}/{:.3f}, prec day/night {:.3f}/{:.3f}, cls day/night {:.3f}/{:.3f}'.format(
self.epoch, np.mean(mean_iou_day), np.mean(mean_iou_night),
np.mean(mean_prec_day), np.mean(mean_prec_night),
np.mean(mean_cls_day), np.mean(mean_cls_night))
self.log_file.write(print_txt + '\n')
print(print_txt)
info = {
'mean_iou_day': np.mean(mean_iou_day),
'mean_iou_night': np.mean(mean_iou_night),
'mean_prec_day': np.mean(mean_prec_day),
'mean_prec_night': np.mean(mean_prec_night),
}
for k, v in info.items():
self.writer.add_scalar(tag=k, scalar_value=v, global_step=self.epoch)
return np.mean(mean_prec_night)
def train(self):
if self.config['local_rank'] == 0:
print('Start to train the model from epoch: {:d}'.format(self.epoch))
hist_values = []
min_value = self.min_loss
epoch = self.epoch
while epoch < self.num_epochs:
if self.config['with_dist']:
self.train_loader.sampler.set_epoch(epoch=epoch)
self.epoch = epoch
train_loss = self.process_epoch()
# return with loss INF/NAN
if train_loss is None:
continue
if self.config['local_rank'] == 0:
if self.do_eval and self.epoch % self.config['eval_n_epoch'] == 0: # and self.epoch >= 50:
eval_ratio = self.eval_seg(loader=self.eval_loader)
hist_values.append(eval_ratio) # higher better
else:
hist_values.append(-train_loss) # lower better
checkpoint_path = os.path.join(self.save_dir,
'%s.%02d.pth' % (self.config['network'], self.epoch))
checkpoint = {
'epoch': self.epoch,
'iteration': self.iteration,
'model': self.model.state_dict(),
'min_loss': min_value,
}
# for multi-gpu training
if len(self.config['gpu']) > 1:
checkpoint['model'] = self.model.module.state_dict()
torch.save(checkpoint, checkpoint_path)
if hist_values[-1] < min_value:
min_value = hist_values[-1]
best_checkpoint_path = os.path.join(
self.save_dir,
'%s.best.pth' % (self.tag)
)
shutil.copy(checkpoint_path, best_checkpoint_path)
# important!!!
epoch += 1
if self.config['local_rank'] == 0:
self.log_file.close()
|