File size: 8,954 Bytes
789fb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
# Benchmark script for LightGlue on real images
import argparse
import time
from collections import defaultdict
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
import torch
import torch._dynamo

from lightglue import LightGlue, SuperPoint
from lightglue.utils import load_image

torch.set_grad_enabled(False)


def measure(matcher, data, device="cuda", r=100):
    timings = np.zeros((r, 1))
    if device.type == "cuda":
        starter = torch.cuda.Event(enable_timing=True)
        ender = torch.cuda.Event(enable_timing=True)
    # warmup
    for _ in range(10):
        _ = matcher(data)
    # measurements
    with torch.no_grad():
        for rep in range(r):
            if device.type == "cuda":
                starter.record()
                _ = matcher(data)
                ender.record()
                # sync gpu
                torch.cuda.synchronize()
                curr_time = starter.elapsed_time(ender)
            else:
                start = time.perf_counter()
                _ = matcher(data)
                curr_time = (time.perf_counter() - start) * 1e3
            timings[rep] = curr_time
    mean_syn = np.sum(timings) / r
    std_syn = np.std(timings)
    return {"mean": mean_syn, "std": std_syn}


def print_as_table(d, title, cnames):
    print()
    header = f"{title:30} " + " ".join([f"{x:>7}" for x in cnames])
    print(header)
    print("-" * len(header))
    for k, l in d.items():
        print(f"{k:30}", " ".join([f"{x:>7.1f}" for x in l]))


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Benchmark script for LightGlue")
    parser.add_argument(
        "--device",
        choices=["auto", "cuda", "cpu", "mps"],
        default="auto",
        help="device to benchmark on",
    )
    parser.add_argument("--compile", action="store_true", help="Compile LightGlue runs")
    parser.add_argument(
        "--no_flash", action="store_true", help="disable FlashAttention"
    )
    parser.add_argument(
        "--no_prune_thresholds",
        action="store_true",
        help="disable pruning thresholds (i.e. always do pruning)",
    )
    parser.add_argument(
        "--add_superglue",
        action="store_true",
        help="add SuperGlue to the benchmark (requires hloc)",
    )
    parser.add_argument(
        "--measure", default="time", choices=["time", "log-time", "throughput"]
    )
    parser.add_argument(
        "--repeat", "--r", type=int, default=100, help="repetitions of measurements"
    )
    parser.add_argument(
        "--num_keypoints",
        nargs="+",
        type=int,
        default=[256, 512, 1024, 2048, 4096],
        help="number of keypoints (list separated by spaces)",
    )
    parser.add_argument(
        "--matmul_precision", default="highest", choices=["highest", "high", "medium"]
    )
    parser.add_argument(
        "--save", default=None, type=str, help="path where figure should be saved"
    )
    args = parser.parse_intermixed_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.device != "auto":
        device = torch.device(args.device)

    print("Running benchmark on device:", device)

    images = Path("assets")
    inputs = {
        "easy": (
            load_image(images / "DSC_0411.JPG"),
            load_image(images / "DSC_0410.JPG"),
        ),
        "difficult": (
            load_image(images / "sacre_coeur1.jpg"),
            load_image(images / "sacre_coeur2.jpg"),
        ),
    }

    configs = {
        "LightGlue-full": {
            "depth_confidence": -1,
            "width_confidence": -1,
        },
        # 'LG-prune': {
        #     'width_confidence': -1,
        # },
        # 'LG-depth': {
        #     'depth_confidence': -1,
        # },
        "LightGlue-adaptive": {},
    }

    if args.compile:
        configs = {**configs, **{k + "-compile": v for k, v in configs.items()}}

    sg_configs = {
        # 'SuperGlue': {},
        "SuperGlue-fast": {"sinkhorn_iterations": 5}
    }

    torch.set_float32_matmul_precision(args.matmul_precision)

    results = {k: defaultdict(list) for k, v in inputs.items()}

    extractor = SuperPoint(max_num_keypoints=None, detection_threshold=-1)
    extractor = extractor.eval().to(device)
    figsize = (len(inputs) * 4.5, 4.5)
    fig, axes = plt.subplots(1, len(inputs), sharey=True, figsize=figsize)
    axes = axes if len(inputs) > 1 else [axes]
    fig.canvas.manager.set_window_title(f"LightGlue benchmark ({device.type})")

    for title, ax in zip(inputs.keys(), axes):
        ax.set_xscale("log", base=2)
        bases = [2**x for x in range(7, 16)]
        ax.set_xticks(bases, bases)
        ax.grid(which="major")
        if args.measure == "log-time":
            ax.set_yscale("log")
            yticks = [10**x for x in range(6)]
            ax.set_yticks(yticks, yticks)
            mpos = [10**x * i for x in range(6) for i in range(2, 10)]
            mlabel = [
                10**x * i if i in [2, 5] else None
                for x in range(6)
                for i in range(2, 10)
            ]
            ax.set_yticks(mpos, mlabel, minor=True)
            ax.grid(which="minor", linewidth=0.2)
        ax.set_title(title)

        ax.set_xlabel("# keypoints")
        if args.measure == "throughput":
            ax.set_ylabel("Throughput [pairs/s]")
        else:
            ax.set_ylabel("Latency [ms]")

    for name, conf in configs.items():
        print("Run benchmark for:", name)
        torch.cuda.empty_cache()
        matcher = LightGlue(features="superpoint", flash=not args.no_flash, **conf)
        if args.no_prune_thresholds:
            matcher.pruning_keypoint_thresholds = {
                k: -1 for k in matcher.pruning_keypoint_thresholds
            }
        matcher = matcher.eval().to(device)
        if name.endswith("compile"):
            import torch._dynamo

            torch._dynamo.reset()  # avoid buffer overflow
            matcher.compile()
        for pair_name, ax in zip(inputs.keys(), axes):
            image0, image1 = [x.to(device) for x in inputs[pair_name]]
            runtimes = []
            for num_kpts in args.num_keypoints:
                extractor.conf.max_num_keypoints = num_kpts
                feats0 = extractor.extract(image0)
                feats1 = extractor.extract(image1)
                runtime = measure(
                    matcher,
                    {"image0": feats0, "image1": feats1},
                    device=device,
                    r=args.repeat,
                )["mean"]
                results[pair_name][name].append(
                    1000 / runtime if args.measure == "throughput" else runtime
                )
            ax.plot(
                args.num_keypoints, results[pair_name][name], label=name, marker="o"
            )
        del matcher, feats0, feats1

    if args.add_superglue:
        from hloc.matchers.superglue import SuperGlue

        for name, conf in sg_configs.items():
            print("Run benchmark for:", name)
            matcher = SuperGlue(conf)
            matcher = matcher.eval().to(device)
            for pair_name, ax in zip(inputs.keys(), axes):
                image0, image1 = [x.to(device) for x in inputs[pair_name]]
                runtimes = []
                for num_kpts in args.num_keypoints:
                    extractor.conf.max_num_keypoints = num_kpts
                    feats0 = extractor.extract(image0)
                    feats1 = extractor.extract(image1)
                    data = {
                        "image0": image0[None],
                        "image1": image1[None],
                        **{k + "0": v for k, v in feats0.items()},
                        **{k + "1": v for k, v in feats1.items()},
                    }
                    data["scores0"] = data["keypoint_scores0"]
                    data["scores1"] = data["keypoint_scores1"]
                    data["descriptors0"] = (
                        data["descriptors0"].transpose(-1, -2).contiguous()
                    )
                    data["descriptors1"] = (
                        data["descriptors1"].transpose(-1, -2).contiguous()
                    )
                    runtime = measure(matcher, data, device=device, r=args.repeat)[
                        "mean"
                    ]
                    results[pair_name][name].append(
                        1000 / runtime if args.measure == "throughput" else runtime
                    )
                ax.plot(
                    args.num_keypoints, results[pair_name][name], label=name, marker="o"
                )
            del matcher, data, image0, image1, feats0, feats1

    for name, runtimes in results.items():
        print_as_table(runtimes, name, args.num_keypoints)

    axes[0].legend()
    fig.tight_layout()
    if args.save:
        plt.savefig(args.save, dpi=fig.dpi)
    plt.show()