File size: 26,763 Bytes
789fb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
# BSD 3-Clause License

# Copyright (c) 2022, Zhao Xiaoming
# All rights reserved.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:

# 1. Redistributions of source code must retain the above copyright notice, this
#    list of conditions and the following disclaimer.

# 2. Redistributions in binary form must reproduce the above copyright notice,
#    this list of conditions and the following disclaimer in the documentation
#    and/or other materials provided with the distribution.

# 3. Neither the name of the copyright holder nor the names of its
#    contributors may be used to endorse or promote products derived from
#    this software without specific prior written permission.

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# Authors:
# Xiaoming Zhao, Xingming Wu, Weihai Chen, Peter C.Y. Chen, Qingsong Xu, and Zhengguo Li
# Code from https://github.com/Shiaoming/ALIKED

from typing import Callable, Optional

import torch
import torch.nn.functional as F
import torchvision
from kornia.color import grayscale_to_rgb
from torch import nn
from torch.nn.modules.utils import _pair
from torchvision.models import resnet

from .utils import Extractor


def get_patches(
    tensor: torch.Tensor, required_corners: torch.Tensor, ps: int
) -> torch.Tensor:
    c, h, w = tensor.shape
    corner = (required_corners - ps / 2 + 1).long()
    corner[:, 0] = corner[:, 0].clamp(min=0, max=w - 1 - ps)
    corner[:, 1] = corner[:, 1].clamp(min=0, max=h - 1 - ps)
    offset = torch.arange(0, ps)

    kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {}
    x, y = torch.meshgrid(offset, offset, **kw)
    patches = torch.stack((x, y)).permute(2, 1, 0).unsqueeze(2)
    patches = patches.to(corner) + corner[None, None]
    pts = patches.reshape(-1, 2)
    sampled = tensor.permute(1, 2, 0)[tuple(pts.T)[::-1]]
    sampled = sampled.reshape(ps, ps, -1, c)
    assert sampled.shape[:3] == patches.shape[:3]
    return sampled.permute(2, 3, 0, 1)


def simple_nms(scores: torch.Tensor, nms_radius: int):
    """Fast Non-maximum suppression to remove nearby points"""

    zeros = torch.zeros_like(scores)
    max_mask = scores == torch.nn.functional.max_pool2d(
        scores, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius
    )

    for _ in range(2):
        supp_mask = (
            torch.nn.functional.max_pool2d(
                max_mask.float(),
                kernel_size=nms_radius * 2 + 1,
                stride=1,
                padding=nms_radius,
            )
            > 0
        )
        supp_scores = torch.where(supp_mask, zeros, scores)
        new_max_mask = supp_scores == torch.nn.functional.max_pool2d(
            supp_scores, kernel_size=nms_radius * 2 + 1, stride=1, padding=nms_radius
        )
        max_mask = max_mask | (new_max_mask & (~supp_mask))
    return torch.where(max_mask, scores, zeros)


class DKD(nn.Module):
    def __init__(
        self,
        radius: int = 2,
        top_k: int = 0,
        scores_th: float = 0.2,
        n_limit: int = 20000,
    ):
        """
        Args:
            radius: soft detection radius, kernel size is (2 * radius + 1)
            top_k: top_k > 0: return top k keypoints
            scores_th: top_k <= 0 threshold mode:
                scores_th > 0: return keypoints with scores>scores_th
                else: return keypoints with scores > scores.mean()
            n_limit: max number of keypoint in threshold mode
        """
        super().__init__()
        self.radius = radius
        self.top_k = top_k
        self.scores_th = scores_th
        self.n_limit = n_limit
        self.kernel_size = 2 * self.radius + 1
        self.temperature = 0.1  # tuned temperature
        self.unfold = nn.Unfold(kernel_size=self.kernel_size, padding=self.radius)
        # local xy grid
        x = torch.linspace(-self.radius, self.radius, self.kernel_size)
        # (kernel_size*kernel_size) x 2 : (w,h)
        kw = {"indexing": "ij"} if torch.__version__ >= "1.10" else {}
        self.hw_grid = (
            torch.stack(torch.meshgrid([x, x], **kw)).view(2, -1).t()[:, [1, 0]]
        )

    def forward(
        self,
        scores_map: torch.Tensor,
        sub_pixel: bool = True,
        image_size: Optional[torch.Tensor] = None,
    ):
        """
        :param scores_map: Bx1xHxW
        :param descriptor_map: BxCxHxW
        :param sub_pixel: whether to use sub-pixel keypoint detection
        :return: kpts: list[Nx2,...]; kptscores: list[N,....] normalised position: -1~1
        """
        b, c, h, w = scores_map.shape
        scores_nograd = scores_map.detach()
        nms_scores = simple_nms(scores_nograd, self.radius)

        # remove border
        nms_scores[:, :, : self.radius, :] = 0
        nms_scores[:, :, :, : self.radius] = 0
        if image_size is not None:
            for i in range(scores_map.shape[0]):
                w, h = image_size[i].long()
                nms_scores[i, :, h.item() - self.radius :, :] = 0
                nms_scores[i, :, :, w.item() - self.radius :] = 0
        else:
            nms_scores[:, :, -self.radius :, :] = 0
            nms_scores[:, :, :, -self.radius :] = 0

        # detect keypoints without grad
        if self.top_k > 0:
            topk = torch.topk(nms_scores.view(b, -1), self.top_k)
            indices_keypoints = [topk.indices[i] for i in range(b)]  # B x top_k
        else:
            if self.scores_th > 0:
                masks = nms_scores > self.scores_th
                if masks.sum() == 0:
                    th = scores_nograd.reshape(b, -1).mean(dim=1)  # th = self.scores_th
                    masks = nms_scores > th.reshape(b, 1, 1, 1)
            else:
                th = scores_nograd.reshape(b, -1).mean(dim=1)  # th = self.scores_th
                masks = nms_scores > th.reshape(b, 1, 1, 1)
            masks = masks.reshape(b, -1)

            indices_keypoints = []  # list, B x (any size)
            scores_view = scores_nograd.reshape(b, -1)
            for mask, scores in zip(masks, scores_view):
                indices = mask.nonzero()[:, 0]
                if len(indices) > self.n_limit:
                    kpts_sc = scores[indices]
                    sort_idx = kpts_sc.sort(descending=True)[1]
                    sel_idx = sort_idx[: self.n_limit]
                    indices = indices[sel_idx]
                indices_keypoints.append(indices)

        wh = torch.tensor([w - 1, h - 1], device=scores_nograd.device)

        keypoints = []
        scoredispersitys = []
        kptscores = []
        if sub_pixel:
            # detect soft keypoints with grad backpropagation
            patches = self.unfold(scores_map)  # B x (kernel**2) x (H*W)
            self.hw_grid = self.hw_grid.to(scores_map)  # to device
            for b_idx in range(b):
                patch = patches[b_idx].t()  # (H*W) x (kernel**2)
                indices_kpt = indices_keypoints[
                    b_idx
                ]  # one dimension vector, say its size is M
                patch_scores = patch[indices_kpt]  # M x (kernel**2)
                keypoints_xy_nms = torch.stack(
                    [indices_kpt % w, torch.div(indices_kpt, w, rounding_mode="trunc")],
                    dim=1,
                )  # Mx2

                # max is detached to prevent undesired backprop loops in the graph
                max_v = patch_scores.max(dim=1).values.detach()[:, None]
                x_exp = (
                    (patch_scores - max_v) / self.temperature
                ).exp()  # M * (kernel**2), in [0, 1]

                # \frac{ \sum{(i,j) \times \exp(x/T)} }{ \sum{\exp(x/T)} }
                xy_residual = (
                    x_exp @ self.hw_grid / x_exp.sum(dim=1)[:, None]
                )  # Soft-argmax, Mx2

                hw_grid_dist2 = (
                    torch.norm(
                        (self.hw_grid[None, :, :] - xy_residual[:, None, :])
                        / self.radius,
                        dim=-1,
                    )
                    ** 2
                )
                scoredispersity = (x_exp * hw_grid_dist2).sum(dim=1) / x_exp.sum(dim=1)

                # compute result keypoints
                keypoints_xy = keypoints_xy_nms + xy_residual
                keypoints_xy = keypoints_xy / wh * 2 - 1  # (w,h) -> (-1~1,-1~1)

                kptscore = torch.nn.functional.grid_sample(
                    scores_map[b_idx].unsqueeze(0),
                    keypoints_xy.view(1, 1, -1, 2),
                    mode="bilinear",
                    align_corners=True,
                )[
                    0, 0, 0, :
                ]  # CxN

                keypoints.append(keypoints_xy)
                scoredispersitys.append(scoredispersity)
                kptscores.append(kptscore)
        else:
            for b_idx in range(b):
                indices_kpt = indices_keypoints[
                    b_idx
                ]  # one dimension vector, say its size is M
                # To avoid warning: UserWarning: __floordiv__ is deprecated
                keypoints_xy_nms = torch.stack(
                    [indices_kpt % w, torch.div(indices_kpt, w, rounding_mode="trunc")],
                    dim=1,
                )  # Mx2
                keypoints_xy = keypoints_xy_nms / wh * 2 - 1  # (w,h) -> (-1~1,-1~1)
                kptscore = torch.nn.functional.grid_sample(
                    scores_map[b_idx].unsqueeze(0),
                    keypoints_xy.view(1, 1, -1, 2),
                    mode="bilinear",
                    align_corners=True,
                )[
                    0, 0, 0, :
                ]  # CxN
                keypoints.append(keypoints_xy)
                scoredispersitys.append(kptscore)  # for jit.script compatability
                kptscores.append(kptscore)

        return keypoints, scoredispersitys, kptscores


class InputPadder(object):
    """Pads images such that dimensions are divisible by 8"""

    def __init__(self, h: int, w: int, divis_by: int = 8):
        self.ht = h
        self.wd = w
        pad_ht = (((self.ht // divis_by) + 1) * divis_by - self.ht) % divis_by
        pad_wd = (((self.wd // divis_by) + 1) * divis_by - self.wd) % divis_by
        self._pad = [
            pad_wd // 2,
            pad_wd - pad_wd // 2,
            pad_ht // 2,
            pad_ht - pad_ht // 2,
        ]

    def pad(self, x: torch.Tensor):
        assert x.ndim == 4
        return F.pad(x, self._pad, mode="replicate")

    def unpad(self, x: torch.Tensor):
        assert x.ndim == 4
        ht = x.shape[-2]
        wd = x.shape[-1]
        c = [self._pad[2], ht - self._pad[3], self._pad[0], wd - self._pad[1]]
        return x[..., c[0] : c[1], c[2] : c[3]]


class DeformableConv2d(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=3,
        stride=1,
        padding=1,
        bias=False,
        mask=False,
    ):
        super(DeformableConv2d, self).__init__()

        self.padding = padding
        self.mask = mask

        self.channel_num = (
            3 * kernel_size * kernel_size if mask else 2 * kernel_size * kernel_size
        )
        self.offset_conv = nn.Conv2d(
            in_channels,
            self.channel_num,
            kernel_size=kernel_size,
            stride=stride,
            padding=self.padding,
            bias=True,
        )

        self.regular_conv = nn.Conv2d(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=self.padding,
            bias=bias,
        )

    def forward(self, x):
        h, w = x.shape[2:]
        max_offset = max(h, w) / 4.0

        out = self.offset_conv(x)
        if self.mask:
            o1, o2, mask = torch.chunk(out, 3, dim=1)
            offset = torch.cat((o1, o2), dim=1)
            mask = torch.sigmoid(mask)
        else:
            offset = out
            mask = None
        offset = offset.clamp(-max_offset, max_offset)
        x = torchvision.ops.deform_conv2d(
            input=x,
            offset=offset,
            weight=self.regular_conv.weight,
            bias=self.regular_conv.bias,
            padding=self.padding,
            mask=mask,
        )
        return x


def get_conv(
    inplanes,
    planes,
    kernel_size=3,
    stride=1,
    padding=1,
    bias=False,
    conv_type="conv",
    mask=False,
):
    if conv_type == "conv":
        conv = nn.Conv2d(
            inplanes,
            planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            bias=bias,
        )
    elif conv_type == "dcn":
        conv = DeformableConv2d(
            inplanes,
            planes,
            kernel_size=kernel_size,
            stride=stride,
            padding=_pair(padding),
            bias=bias,
            mask=mask,
        )
    else:
        raise TypeError
    return conv


class ConvBlock(nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        gate: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        conv_type: str = "conv",
        mask: bool = False,
    ):
        super().__init__()
        if gate is None:
            self.gate = nn.ReLU(inplace=True)
        else:
            self.gate = gate
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self.conv1 = get_conv(
            in_channels, out_channels, kernel_size=3, conv_type=conv_type, mask=mask
        )
        self.bn1 = norm_layer(out_channels)
        self.conv2 = get_conv(
            out_channels, out_channels, kernel_size=3, conv_type=conv_type, mask=mask
        )
        self.bn2 = norm_layer(out_channels)

    def forward(self, x):
        x = self.gate(self.bn1(self.conv1(x)))  # B x in_channels x H x W
        x = self.gate(self.bn2(self.conv2(x)))  # B x out_channels x H x W
        return x


# modified based on torchvision\models\resnet.py#27->BasicBlock
class ResBlock(nn.Module):
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
        gate: Optional[Callable[..., nn.Module]] = None,
        norm_layer: Optional[Callable[..., nn.Module]] = None,
        conv_type: str = "conv",
        mask: bool = False,
    ) -> None:
        super(ResBlock, self).__init__()
        if gate is None:
            self.gate = nn.ReLU(inplace=True)
        else:
            self.gate = gate
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        if groups != 1 or base_width != 64:
            raise ValueError("ResBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in ResBlock")
        # Both self.conv1 and self.downsample layers
        # downsample the input when stride != 1
        self.conv1 = get_conv(
            inplanes, planes, kernel_size=3, conv_type=conv_type, mask=mask
        )
        self.bn1 = norm_layer(planes)
        self.conv2 = get_conv(
            planes, planes, kernel_size=3, conv_type=conv_type, mask=mask
        )
        self.bn2 = norm_layer(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.gate(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.gate(out)

        return out


class SDDH(nn.Module):
    def __init__(
        self,
        dims: int,
        kernel_size: int = 3,
        n_pos: int = 8,
        gate=nn.ReLU(),
        conv2D=False,
        mask=False,
    ):
        super(SDDH, self).__init__()
        self.kernel_size = kernel_size
        self.n_pos = n_pos
        self.conv2D = conv2D
        self.mask = mask

        self.get_patches_func = get_patches

        # estimate offsets
        self.channel_num = 3 * n_pos if mask else 2 * n_pos
        self.offset_conv = nn.Sequential(
            nn.Conv2d(
                dims,
                self.channel_num,
                kernel_size=kernel_size,
                stride=1,
                padding=0,
                bias=True,
            ),
            gate,
            nn.Conv2d(
                self.channel_num,
                self.channel_num,
                kernel_size=1,
                stride=1,
                padding=0,
                bias=True,
            ),
        )

        # sampled feature conv
        self.sf_conv = nn.Conv2d(
            dims, dims, kernel_size=1, stride=1, padding=0, bias=False
        )

        # convM
        if not conv2D:
            # deformable desc weights
            agg_weights = torch.nn.Parameter(torch.rand(n_pos, dims, dims))
            self.register_parameter("agg_weights", agg_weights)
        else:
            self.convM = nn.Conv2d(
                dims * n_pos, dims, kernel_size=1, stride=1, padding=0, bias=False
            )

    def forward(self, x, keypoints):
        # x: [B,C,H,W]
        # keypoints: list, [[N_kpts,2], ...] (w,h)
        b, c, h, w = x.shape
        wh = torch.tensor([[w - 1, h - 1]], device=x.device)
        max_offset = max(h, w) / 4.0

        offsets = []
        descriptors = []
        # get offsets for each keypoint
        for ib in range(b):
            xi, kptsi = x[ib], keypoints[ib]
            kptsi_wh = (kptsi / 2 + 0.5) * wh
            N_kpts = len(kptsi)

            if self.kernel_size > 1:
                patch = self.get_patches_func(
                    xi, kptsi_wh.long(), self.kernel_size
                )  # [N_kpts, C, K, K]
            else:
                kptsi_wh_long = kptsi_wh.long()
                patch = (
                    xi[:, kptsi_wh_long[:, 1], kptsi_wh_long[:, 0]]
                    .permute(1, 0)
                    .reshape(N_kpts, c, 1, 1)
                )

            offset = self.offset_conv(patch).clamp(
                -max_offset, max_offset
            )  # [N_kpts, 2*n_pos, 1, 1]
            if self.mask:
                offset = (
                    offset[:, :, 0, 0].view(N_kpts, 3, self.n_pos).permute(0, 2, 1)
                )  # [N_kpts, n_pos, 3]
                offset = offset[:, :, :-1]  # [N_kpts, n_pos, 2]
                mask_weight = torch.sigmoid(offset[:, :, -1])  # [N_kpts, n_pos]
            else:
                offset = (
                    offset[:, :, 0, 0].view(N_kpts, 2, self.n_pos).permute(0, 2, 1)
                )  # [N_kpts, n_pos, 2]
            offsets.append(offset)  # for visualization

            # get sample positions
            pos = kptsi_wh.unsqueeze(1) + offset  # [N_kpts, n_pos, 2]
            pos = 2.0 * pos / wh[None] - 1
            pos = pos.reshape(1, N_kpts * self.n_pos, 1, 2)

            # sample features
            features = F.grid_sample(
                xi.unsqueeze(0), pos, mode="bilinear", align_corners=True
            )  # [1,C,(N_kpts*n_pos),1]
            features = features.reshape(c, N_kpts, self.n_pos, 1).permute(
                1, 0, 2, 3
            )  # [N_kpts, C, n_pos, 1]
            if self.mask:
                features = torch.einsum("ncpo,np->ncpo", features, mask_weight)

            features = torch.selu_(self.sf_conv(features)).squeeze(
                -1
            )  # [N_kpts, C, n_pos]
            # convM
            if not self.conv2D:
                descs = torch.einsum(
                    "ncp,pcd->nd", features, self.agg_weights
                )  # [N_kpts, C]
            else:
                features = features.reshape(N_kpts, -1)[
                    :, :, None, None
                ]  # [N_kpts, C*n_pos, 1, 1]
                descs = self.convM(features).squeeze()  # [N_kpts, C]

            # normalize
            descs = F.normalize(descs, p=2.0, dim=1)
            descriptors.append(descs)

        return descriptors, offsets


class ALIKED(Extractor):
    default_conf = {
        "model_name": "aliked-n16",
        "max_num_keypoints": -1,
        "detection_threshold": 0.2,
        "nms_radius": 2,
    }

    checkpoint_url = "https://github.com/Shiaoming/ALIKED/raw/main/models/{}.pth"

    n_limit_max = 20000

    # c1, c2, c3, c4, dim, K, M
    cfgs = {
        "aliked-t16": [8, 16, 32, 64, 64, 3, 16],
        "aliked-n16": [16, 32, 64, 128, 128, 3, 16],
        "aliked-n16rot": [16, 32, 64, 128, 128, 3, 16],
        "aliked-n32": [16, 32, 64, 128, 128, 3, 32],
    }
    preprocess_conf = {
        "resize": 1024,
    }

    required_data_keys = ["image"]

    def __init__(self, **conf):
        super().__init__(**conf)  # Update with default configuration.
        conf = self.conf
        c1, c2, c3, c4, dim, K, M = self.cfgs[conf.model_name]
        conv_types = ["conv", "conv", "dcn", "dcn"]
        conv2D = False
        mask = False

        # build model
        self.pool2 = nn.AvgPool2d(kernel_size=2, stride=2)
        self.pool4 = nn.AvgPool2d(kernel_size=4, stride=4)
        self.norm = nn.BatchNorm2d
        self.gate = nn.SELU(inplace=True)
        self.block1 = ConvBlock(3, c1, self.gate, self.norm, conv_type=conv_types[0])
        self.block2 = self.get_resblock(c1, c2, conv_types[1], mask)
        self.block3 = self.get_resblock(c2, c3, conv_types[2], mask)
        self.block4 = self.get_resblock(c3, c4, conv_types[3], mask)

        self.conv1 = resnet.conv1x1(c1, dim // 4)
        self.conv2 = resnet.conv1x1(c2, dim // 4)
        self.conv3 = resnet.conv1x1(c3, dim // 4)
        self.conv4 = resnet.conv1x1(dim, dim // 4)
        self.upsample2 = nn.Upsample(
            scale_factor=2, mode="bilinear", align_corners=True
        )
        self.upsample4 = nn.Upsample(
            scale_factor=4, mode="bilinear", align_corners=True
        )
        self.upsample8 = nn.Upsample(
            scale_factor=8, mode="bilinear", align_corners=True
        )
        self.upsample32 = nn.Upsample(
            scale_factor=32, mode="bilinear", align_corners=True
        )
        self.score_head = nn.Sequential(
            resnet.conv1x1(dim, 8),
            self.gate,
            resnet.conv3x3(8, 4),
            self.gate,
            resnet.conv3x3(4, 4),
            self.gate,
            resnet.conv3x3(4, 1),
        )
        self.desc_head = SDDH(dim, K, M, gate=self.gate, conv2D=conv2D, mask=mask)
        self.dkd = DKD(
            radius=conf.nms_radius,
            top_k=-1 if conf.detection_threshold > 0 else conf.max_num_keypoints,
            scores_th=conf.detection_threshold,
            n_limit=conf.max_num_keypoints
            if conf.max_num_keypoints > 0
            else self.n_limit_max,
        )

        state_dict = torch.hub.load_state_dict_from_url(
            self.checkpoint_url.format(conf.model_name), map_location="cpu"
        )
        self.load_state_dict(state_dict, strict=True)

    def get_resblock(self, c_in, c_out, conv_type, mask):
        return ResBlock(
            c_in,
            c_out,
            1,
            nn.Conv2d(c_in, c_out, 1),
            gate=self.gate,
            norm_layer=self.norm,
            conv_type=conv_type,
            mask=mask,
        )

    def extract_dense_map(self, image):
        # Pads images such that dimensions are divisible by
        div_by = 2**5
        padder = InputPadder(image.shape[-2], image.shape[-1], div_by)
        image = padder.pad(image)

        # ================================== feature encoder
        x1 = self.block1(image)  # B x c1 x H x W
        x2 = self.pool2(x1)
        x2 = self.block2(x2)  # B x c2 x H/2 x W/2
        x3 = self.pool4(x2)
        x3 = self.block3(x3)  # B x c3 x H/8 x W/8
        x4 = self.pool4(x3)
        x4 = self.block4(x4)  # B x dim x H/32 x W/32
        # ================================== feature aggregation
        x1 = self.gate(self.conv1(x1))  # B x dim//4 x H x W
        x2 = self.gate(self.conv2(x2))  # B x dim//4 x H//2 x W//2
        x3 = self.gate(self.conv3(x3))  # B x dim//4 x H//8 x W//8
        x4 = self.gate(self.conv4(x4))  # B x dim//4 x H//32 x W//32
        x2_up = self.upsample2(x2)  # B x dim//4 x H x W
        x3_up = self.upsample8(x3)  # B x dim//4 x H x W
        x4_up = self.upsample32(x4)  # B x dim//4 x H x W
        x1234 = torch.cat([x1, x2_up, x3_up, x4_up], dim=1)
        # ================================== score head
        score_map = torch.sigmoid(self.score_head(x1234))
        feature_map = torch.nn.functional.normalize(x1234, p=2, dim=1)

        # Unpads images
        feature_map = padder.unpad(feature_map)
        score_map = padder.unpad(score_map)

        return feature_map, score_map

    def forward(self, data: dict) -> dict:
        image = data["image"]
        if image.shape[1] == 1:
            image = grayscale_to_rgb(image)
        feature_map, score_map = self.extract_dense_map(image)
        keypoints, kptscores, scoredispersitys = self.dkd(
            score_map, image_size=data.get("image_size")
        )
        descriptors, offsets = self.desc_head(feature_map, keypoints)

        _, _, h, w = image.shape
        wh = torch.tensor([w - 1, h - 1], device=image.device)
        # no padding required
        # we can set detection_threshold=-1 and conf.max_num_keypoints > 0
        return {
            "keypoints": wh * (torch.stack(keypoints) + 1) / 2.0,  # B x N x 2
            "descriptors": torch.stack(descriptors),  # B x N x D
            "keypoint_scores": torch.stack(kptscores),  # B x N
        }