File size: 5,885 Bytes
2673dcd
 
 
 
 
 
 
 
 
789fb0a
2673dcd
 
 
 
 
 
4c12b36
 
2673dcd
 
 
 
 
4c12b36
 
2673dcd
4c12b36
 
2673dcd
 
 
 
 
4c12b36
2673dcd
 
 
4c12b36
2673dcd
 
 
4c12b36
2673dcd
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
2673dcd
 
 
 
 
 
 
 
4c12b36
 
2673dcd
4c12b36
 
2673dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
2673dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
2673dcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
 
 
 
 
 
 
 
2673dcd
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
 
 
 
 
2673dcd
4c12b36
 
 
2673dcd
4c12b36
 
 
 
 
 
2673dcd
 
 
 
4c12b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""
2D visualization primitives based on Matplotlib.
1) Plot images with `plot_images`.
2) Call `plot_keypoints` or `plot_matches` any number of times.
3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`.
"""

import matplotlib
import matplotlib.patheffects as path_effects
import matplotlib.pyplot as plt
import numpy as np
import torch


def cm_RdGn(x):
    """Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
    x = np.clip(x, 0, 1)[..., None] * 2
    c = x * np.array([[0, 1.0, 0]]) + (2 - x) * np.array([[1.0, 0, 0]])
    return np.clip(c, 0, 1)


def cm_BlRdGn(x_):
    """Custom colormap: blue (-1) -> red (0.0) -> green (1)."""
    x = np.clip(x_, 0, 1)[..., None] * 2
    c = x * np.array([[0, 1.0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0, 1.0]])

    xn = -np.clip(x_, -1, 0)[..., None] * 2
    cn = xn * np.array([[0, 0.1, 1, 1.0]]) + (2 - xn) * np.array([[1.0, 0, 0, 1.0]])
    out = np.clip(np.where(x_[..., None] < 0, cn, c), 0, 1)
    return out


def cm_prune(x_):
    """Custom colormap to visualize pruning"""
    if isinstance(x_, torch.Tensor):
        x_ = x_.cpu().numpy()
    max_i = max(x_)
    norm_x = np.where(x_ == max_i, -1, (x_ - 1) / 9)
    return cm_BlRdGn(norm_x)


def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True):
    """Plot a set of images horizontally.
    Args:
        imgs: list of NumPy RGB (H, W, 3) or PyTorch RGB (3, H, W) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images.
        adaptive: whether the figure size should fit the image aspect ratios.
    """
    # conversion to (H, W, 3) for torch.Tensor
    imgs = [
        img.permute(1, 2, 0).cpu().numpy()
        if (isinstance(img, torch.Tensor) and img.dim() == 3)
        else img
        for img in imgs
    ]

    n = len(imgs)
    if not isinstance(cmaps, (list, tuple)):
        cmaps = [cmaps] * n

    if adaptive:
        ratios = [i.shape[1] / i.shape[0] for i in imgs]  # W / H
    else:
        ratios = [4 / 3] * n
    figsize = [sum(ratios) * 4.5, 4.5]
    fig, ax = plt.subplots(
        1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
    )
    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    fig.tight_layout(pad=pad)


def plot_keypoints(kpts, colors="lime", ps=4, axes=None, a=1.0):
    """Plot keypoints for existing images.
    Args:
        kpts: list of ndarrays of size (N, 2).
        colors: string, or list of list of tuples (one for each keypoints).
        ps: size of the keypoints as float.
    """
    if not isinstance(colors, list):
        colors = [colors] * len(kpts)
    if not isinstance(a, list):
        a = [a] * len(kpts)
    if axes is None:
        axes = plt.gcf().axes
    for ax, k, c, alpha in zip(axes, kpts, colors, a):
        if isinstance(k, torch.Tensor):
            k = k.cpu().numpy()
        ax.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0, alpha=alpha)


def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, a=1.0, labels=None, axes=None):
    """Plot matches for a pair of existing images.
    Args:
        kpts0, kpts1: corresponding keypoints of size (N, 2).
        color: color of each match, string or RGB tuple. Random if not given.
        lw: width of the lines.
        ps: size of the end points (no endpoint if ps=0)
        indices: indices of the images to draw the matches on.
        a: alpha opacity of the match lines.
    """
    fig = plt.gcf()
    if axes is None:
        ax = fig.axes
        ax0, ax1 = ax[0], ax[1]
    else:
        ax0, ax1 = axes
    if isinstance(kpts0, torch.Tensor):
        kpts0 = kpts0.cpu().numpy()
    if isinstance(kpts1, torch.Tensor):
        kpts1 = kpts1.cpu().numpy()
    assert len(kpts0) == len(kpts1)
    if color is None:
        color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist()
    elif len(color) > 0 and not isinstance(color[0], (tuple, list)):
        color = [color] * len(kpts0)

    if lw > 0:
        for i in range(len(kpts0)):
            line = matplotlib.patches.ConnectionPatch(
                xyA=(kpts0[i, 0], kpts0[i, 1]),
                xyB=(kpts1[i, 0], kpts1[i, 1]),
                coordsA=ax0.transData,
                coordsB=ax1.transData,
                axesA=ax0,
                axesB=ax1,
                zorder=1,
                color=color[i],
                linewidth=lw,
                clip_on=True,
                alpha=a,
                label=None if labels is None else labels[i],
                picker=5.0,
            )
            line.set_annotation_clip(True)
            fig.add_artist(line)

    # freeze the axes to prevent the transform to change
    ax0.autoscale(enable=False)
    ax1.autoscale(enable=False)

    if ps > 0:
        ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps)
        ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps)


def add_text(
    idx,
    text,
    pos=(0.01, 0.99),
    fs=15,
    color="w",
    lcolor="k",
    lwidth=2,
    ha="left",
    va="top",
):
    ax = plt.gcf().axes[idx]
    t = ax.text(
        *pos, text, fontsize=fs, ha=ha, va=va, color=color, transform=ax.transAxes
    )
    if lcolor is not None:
        t.set_path_effects(
            [
                path_effects.Stroke(linewidth=lwidth, foreground=lcolor),
                path_effects.Normal(),
            ]
        )


def save_plot(path, **kw):
    """Save the current figure without any white margin."""
    plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw)