File size: 6,467 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from collections import defaultdict
from pathlib import Path

import matplotlib.pyplot as plt
import numpy as np
from omegaconf import OmegaConf
from tqdm import tqdm

from ..datasets import get_dataset
from ..models.cache_loader import CacheLoader
from ..settings import EVAL_PATH
from ..utils.export_predictions import export_predictions
from .eval_pipeline import EvalPipeline, load_eval
from .io import get_eval_parser, load_model, parse_eval_args
from .utils import aggregate_pr_results, get_tp_fp_pts


def eval_dataset(loader, pred_file, suffix=""):
    results = defaultdict(list)
    results["num_pos" + suffix] = 0
    cache_loader = CacheLoader({"path": str(pred_file), "collate": None}).eval()
    for data in tqdm(loader):
        pred = cache_loader(data)

        if suffix == "":
            scores = pred["matching_scores0"].numpy()
            sort_indices = np.argsort(scores)[::-1]
            gt_matches = pred["gt_matches0"].numpy()[sort_indices]
            pred_matches = pred["matches0"].numpy()[sort_indices]
        else:
            scores = pred["line_matching_scores0"].numpy()
            sort_indices = np.argsort(scores)[::-1]
            gt_matches = pred["gt_line_matches0"].numpy()[sort_indices]
            pred_matches = pred["line_matches0"].numpy()[sort_indices]
        scores = scores[sort_indices]

        tp, fp, scores, num_pos = get_tp_fp_pts(pred_matches, gt_matches, scores)
        results["tp" + suffix].append(tp)
        results["fp" + suffix].append(fp)
        results["scores" + suffix].append(scores)
        results["num_pos" + suffix] += num_pos

    # Aggregate the results
    return aggregate_pr_results(results, suffix=suffix)


class ETH3DPipeline(EvalPipeline):
    default_conf = {
        "data": {
            "name": "eth3d",
            "batch_size": 1,
            "train_batch_size": 1,
            "val_batch_size": 1,
            "test_batch_size": 1,
            "num_workers": 16,
        },
        "model": {
            "name": "gluefactory.models.two_view_pipeline",
            "ground_truth": {
                "name": "gluefactory.models.matchers.depth_matcher",
                "use_lines": False,
            },
            "run_gt_in_forward": True,
        },
        "eval": {"plot_methods": [], "plot_line_methods": [], "eval_lines": False},
    }

    export_keys = [
        "gt_matches0",
        "matches0",
        "matching_scores0",
    ]

    optional_export_keys = [
        "gt_line_matches0",
        "line_matches0",
        "line_matching_scores0",
    ]

    def get_dataloader(self, data_conf=None):
        data_conf = data_conf if data_conf is not None else self.default_conf["data"]
        dataset = get_dataset("eth3d")(data_conf)
        return dataset.get_data_loader("test")

    def get_predictions(self, experiment_dir, model=None, overwrite=False):
        pred_file = experiment_dir / "predictions.h5"
        if not pred_file.exists() or overwrite:
            if model is None:
                model = load_model(self.conf.model, self.conf.checkpoint)
            export_predictions(
                self.get_dataloader(self.conf.data),
                model,
                pred_file,
                keys=self.export_keys,
                optional_keys=self.optional_export_keys,
            )
        return pred_file

    def run_eval(self, loader, pred_file):
        eval_conf = self.conf.eval
        r = eval_dataset(loader, pred_file)
        if self.conf.eval.eval_lines:
            r.update(eval_dataset(loader, pred_file, conf=eval_conf, suffix="_lines"))
        s = {}

        return s, {}, r


def plot_pr_curve(
    models_name, results, dst_file="eth3d_pr_curve.pdf", title=None, suffix=""
):
    plt.figure()
    f_scores = np.linspace(0.2, 0.9, num=8)
    for f_score in f_scores:
        x = np.linspace(0.01, 1)
        y = f_score * x / (2 * x - f_score)
        plt.plot(x[y >= 0], y[y >= 0], color=[0, 0.5, 0], alpha=0.3)
        plt.annotate(
            "f={0:0.1}".format(f_score),
            xy=(0.9, y[45] + 0.02),
            alpha=0.4,
            fontsize=14,
        )

    plt.rcParams.update({"font.size": 12})
    # plt.rc('legend', fontsize=10)
    plt.grid(True)
    plt.axis([0.0, 1.0, 0.0, 1.0])
    plt.xticks(np.arange(0, 1.05, step=0.1), fontsize=16)
    plt.xlabel("Recall", fontsize=18)
    plt.ylabel("Precision", fontsize=18)
    plt.yticks(np.arange(0, 1.05, step=0.1), fontsize=16)
    plt.ylim([0.3, 1.0])
    prop_cycle = plt.rcParams["axes.prop_cycle"]
    colors = prop_cycle.by_key()["color"]
    for m, c in zip(models_name, colors):
        sAP_string = f'{m}: {results[m]["AP" + suffix]:.1f}'
        plt.plot(
            results[m]["curve_recall" + suffix],
            results[m]["curve_precision" + suffix],
            label=sAP_string,
            color=c,
        )

    plt.legend(fontsize=16, loc="lower right")
    if title:
        plt.title(title)

    plt.tight_layout(pad=0.5)
    print(f"Saving plot to: {dst_file}")
    plt.savefig(dst_file)
    plt.show()


if __name__ == "__main__":
    dataset_name = Path(__file__).stem
    parser = get_eval_parser()
    args = parser.parse_intermixed_args()

    default_conf = OmegaConf.create(ETH3DPipeline.default_conf)

    # mingle paths
    output_dir = Path(EVAL_PATH, dataset_name)
    output_dir.mkdir(exist_ok=True, parents=True)

    name, conf = parse_eval_args(
        dataset_name,
        args,
        "configs/",
        default_conf,
    )

    experiment_dir = output_dir / name
    experiment_dir.mkdir(exist_ok=True)

    pipeline = ETH3DPipeline(conf)
    s, f, r = pipeline.run(
        experiment_dir, overwrite=args.overwrite, overwrite_eval=args.overwrite_eval
    )

    # print results
    for k, v in r.items():
        if k.startswith("AP"):
            print(f"{k}: {v:.2f}")

    if args.plot:
        results = {}
        for m in conf.eval.plot_methods:
            exp_dir = output_dir / m
            results[m] = load_eval(exp_dir)[1]

        plot_pr_curve(conf.eval.plot_methods, results, dst_file="eth3d_pr_curve.pdf")
        if conf.eval.eval_lines:
            for m in conf.eval.plot_line_methods:
                exp_dir = output_dir / m
                results[m] = load_eval(exp_dir)[1]
            plot_pr_curve(
                conf.eval.plot_line_methods,
                results,
                dst_file="eth3d_pr_curve_lines.pdf",
                suffix="_lines",
            )