File size: 9,178 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import numpy as np
import torch
from kornia.geometry.homography import find_homography_dlt

from ..geometry.epipolar import generalized_epi_dist, relative_pose_error
from ..geometry.gt_generation import IGNORE_FEATURE
from ..geometry.homography import homography_corner_error, sym_homography_error
from ..robust_estimators import load_estimator
from ..utils.tensor import index_batch
from ..utils.tools import AUCMetric


def check_keys_recursive(d, pattern):
    if isinstance(pattern, dict):
        {check_keys_recursive(d[k], v) for k, v in pattern.items()}
    else:
        for k in pattern:
            assert k in d.keys()


def get_matches_scores(kpts0, kpts1, matches0, mscores0):
    m0 = matches0 > -1
    m1 = matches0[m0]
    pts0 = kpts0[m0]
    pts1 = kpts1[m1]
    scores = mscores0[m0]
    return pts0, pts1, scores


def eval_per_batch_item(data: dict, pred: dict, eval_f, *args, **kwargs):
    # Batched data
    results = [
        eval_f(data_i, pred_i, *args, **kwargs)
        for data_i, pred_i in zip(index_batch(data), index_batch(pred))
    ]
    # Return a dictionary of lists with the evaluation of each item
    return {k: [r[k] for r in results] for k in results[0].keys()}


def eval_matches_epipolar(data: dict, pred: dict) -> dict:
    check_keys_recursive(data, ["view0", "view1", "T_0to1"])
    check_keys_recursive(
        pred, ["keypoints0", "keypoints1", "matches0", "matching_scores0"]
    )

    kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
    m0, scores0 = pred["matches0"], pred["matching_scores0"]
    pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)

    results = {}

    # match metrics
    n_epi_err = generalized_epi_dist(
        pts0[None],
        pts1[None],
        data["view0"]["camera"],
        data["view1"]["camera"],
        data["T_0to1"],
        False,
        essential=True,
    )[0]
    results["epi_prec@1e-4"] = (n_epi_err < 1e-4).float().mean()
    results["epi_prec@5e-4"] = (n_epi_err < 5e-4).float().mean()
    results["epi_prec@1e-3"] = (n_epi_err < 1e-3).float().mean()

    results["num_matches"] = pts0.shape[0]
    results["num_keypoints"] = (kp0.shape[0] + kp1.shape[0]) / 2.0

    return results


def eval_matches_homography(data: dict, pred: dict) -> dict:
    check_keys_recursive(data, ["H_0to1"])
    check_keys_recursive(
        pred, ["keypoints0", "keypoints1", "matches0", "matching_scores0"]
    )

    H_gt = data["H_0to1"]
    if H_gt.ndim > 2:
        return eval_per_batch_item(data, pred, eval_matches_homography)

    kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
    m0, scores0 = pred["matches0"], pred["matching_scores0"]
    pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)
    err = sym_homography_error(pts0, pts1, H_gt)
    results = {}
    results["prec@1px"] = (err < 1).float().mean().nan_to_num().item()
    results["prec@3px"] = (err < 3).float().mean().nan_to_num().item()
    results["num_matches"] = pts0.shape[0]
    results["num_keypoints"] = (kp0.shape[0] + kp1.shape[0]) / 2.0
    return results


def eval_relative_pose_robust(data, pred, conf):
    check_keys_recursive(data, ["view0", "view1", "T_0to1"])
    check_keys_recursive(
        pred, ["keypoints0", "keypoints1", "matches0", "matching_scores0"]
    )

    T_gt = data["T_0to1"]
    kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
    m0, scores0 = pred["matches0"], pred["matching_scores0"]
    pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)

    results = {}

    estimator = load_estimator("relative_pose", conf["estimator"])(conf)
    data_ = {
        "m_kpts0": pts0,
        "m_kpts1": pts1,
        "camera0": data["view0"]["camera"][0],
        "camera1": data["view1"]["camera"][0],
    }
    est = estimator(data_)

    if not est["success"]:
        results["rel_pose_error"] = float("inf")
        results["ransac_inl"] = 0
        results["ransac_inl%"] = 0
    else:
        # R, t, inl = ret
        M = est["M_0to1"]
        inl = est["inliers"].numpy()
        t_error, r_error = relative_pose_error(T_gt, M.R, M.t)
        results["rel_pose_error"] = max(r_error, t_error)
        results["ransac_inl"] = np.sum(inl)
        results["ransac_inl%"] = np.mean(inl)

    return results


def eval_homography_robust(data, pred, conf):
    H_gt = data["H_0to1"]
    if H_gt.ndim > 2:
        return eval_per_batch_item(data, pred, eval_relative_pose_robust, conf)

    estimator = load_estimator("homography", conf["estimator"])(conf)

    data_ = {}
    if "keypoints0" in pred:
        kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
        m0, scores0 = pred["matches0"], pred["matching_scores0"]
        pts0, pts1, _ = get_matches_scores(kp0, kp1, m0, scores0)
        data_["m_kpts0"] = pts0
        data_["m_kpts1"] = pts1
    if "lines0" in pred:
        if "orig_lines0" in pred:
            lines0 = pred["orig_lines0"]
            lines1 = pred["orig_lines1"]
        else:
            lines0 = pred["lines0"]
            lines1 = pred["lines1"]
        m_lines0, m_lines1, _ = get_matches_scores(
            lines0, lines1, pred["line_matches0"], pred["line_matching_scores0"]
        )
        data_["m_lines0"] = m_lines0
        data_["m_lines1"] = m_lines1

    est = estimator(data_)
    if est["success"]:
        M = est["M_0to1"]
        error_r = homography_corner_error(M, H_gt, data["view0"]["image_size"]).item()
    else:
        error_r = float("inf")

    results = {}
    results["H_error_ransac"] = error_r
    if "inliers" in est:
        inl = est["inliers"]
        results["ransac_inl"] = inl.float().sum().item()
        results["ransac_inl%"] = inl.float().sum().item() / max(len(inl), 1)

    return results


def eval_homography_dlt(data, pred):
    H_gt = data["H_0to1"]
    H_inf = torch.ones_like(H_gt) * float("inf")

    kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
    m0, scores0 = pred["matches0"], pred["matching_scores0"]
    pts0, pts1, scores = get_matches_scores(kp0, kp1, m0, scores0)
    scores = scores.to(pts0)
    results = {}
    try:
        if H_gt.ndim == 2:
            pts0, pts1, scores = pts0[None], pts1[None], scores[None]
        h_dlt = find_homography_dlt(pts0, pts1, scores)
        if H_gt.ndim == 2:
            h_dlt = h_dlt[0]
    except AssertionError:
        h_dlt = H_inf

    error_dlt = homography_corner_error(h_dlt, H_gt, data["view0"]["image_size"])
    results["H_error_dlt"] = error_dlt.item()
    return results


def eval_poses(pose_results, auc_ths, key, unit="°"):
    pose_aucs = {}
    best_th = -1
    for th, results_i in pose_results.items():
        pose_aucs[th] = AUCMetric(auc_ths, results_i[key]).compute()
    mAAs = {k: np.mean(v) for k, v in pose_aucs.items()}
    best_th = max(mAAs, key=mAAs.get)

    if len(pose_aucs) > -1:
        print("Tested ransac setup with following results:")
        print("AUC", pose_aucs)
        print("mAA", mAAs)
        print("best threshold =", best_th)

    summaries = {}

    for i, ath in enumerate(auc_ths):
        summaries[f"{key}@{ath}{unit}"] = pose_aucs[best_th][i]
    summaries[f"{key}_mAA"] = mAAs[best_th]

    for k, v in pose_results[best_th].items():
        arr = np.array(v)
        if not np.issubdtype(np.array(v).dtype, np.number):
            continue
        summaries[f"m{k}"] = round(np.median(arr), 3)
    return summaries, best_th


def get_tp_fp_pts(pred_matches, gt_matches, pred_scores):
    """
    Computes the True Positives (TP), False positives (FP), the score associated
    to each match and the number of positives for a set of matches.
    """
    assert pred_matches.shape == pred_scores.shape
    ignore_mask = gt_matches != IGNORE_FEATURE
    pred_matches, gt_matches, pred_scores = (
        pred_matches[ignore_mask],
        gt_matches[ignore_mask],
        pred_scores[ignore_mask],
    )
    num_pos = np.sum(gt_matches != -1)
    pred_positives = pred_matches != -1
    tp = pred_matches[pred_positives] == gt_matches[pred_positives]
    fp = pred_matches[pred_positives] != gt_matches[pred_positives]
    scores = pred_scores[pred_positives]
    return tp, fp, scores, num_pos


def AP(tp, fp):
    recall = tp
    precision = tp / np.maximum(tp + fp, 1e-9)
    recall = np.concatenate(([0.0], recall, [1.0]))
    precision = np.concatenate(([0.0], precision, [0.0]))
    for i in range(precision.size - 1, 0, -1):
        precision[i - 1] = max(precision[i - 1], precision[i])
    i = np.where(recall[1:] != recall[:-1])[0]
    ap = np.sum((recall[i + 1] - recall[i]) * precision[i + 1])
    return ap


def aggregate_pr_results(results, suffix=""):
    tp_list = np.concatenate(results["tp" + suffix], axis=0)
    fp_list = np.concatenate(results["fp" + suffix], axis=0)
    scores_list = np.concatenate(results["scores" + suffix], axis=0)
    n_gt = max(results["num_pos" + suffix], 1)

    out = {}
    idx = np.argsort(scores_list)[::-1]
    tp_vals = np.cumsum(tp_list[idx]) / n_gt
    fp_vals = np.cumsum(fp_list[idx]) / n_gt
    out["curve_recall" + suffix] = tp_vals
    out["curve_precision" + suffix] = tp_vals / np.maximum(tp_vals + fp_vals, 1e-9)
    out["AP" + suffix] = AP(tp_vals, fp_vals) * 100
    return out