Spaces:
Running
Running
File size: 7,001 Bytes
4dfb78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
"""
Various handy Python and PyTorch utils.
Author: Paul-Edouard Sarlin (skydes)
"""
import os
import random
import time
from collections.abc import Iterable
from contextlib import contextmanager
import numpy as np
import torch
class AverageMetric:
def __init__(self):
self._sum = 0
self._num_examples = 0
def update(self, tensor):
assert tensor.dim() == 1
tensor = tensor[~torch.isnan(tensor)]
self._sum += tensor.sum().item()
self._num_examples += len(tensor)
def compute(self):
if self._num_examples == 0:
return np.nan
else:
return self._sum / self._num_examples
# same as AverageMetric, but tracks all elements
class FAverageMetric:
def __init__(self):
self._sum = 0
self._num_examples = 0
self._elements = []
def update(self, tensor):
self._elements += tensor.cpu().numpy().tolist()
assert tensor.dim() == 1
tensor = tensor[~torch.isnan(tensor)]
self._sum += tensor.sum().item()
self._num_examples += len(tensor)
def compute(self):
if self._num_examples == 0:
return np.nan
else:
return self._sum / self._num_examples
class MedianMetric:
def __init__(self):
self._elements = []
def update(self, tensor):
assert tensor.dim() == 1
self._elements += tensor.cpu().numpy().tolist()
def compute(self):
if len(self._elements) == 0:
return np.nan
else:
return np.nanmedian(self._elements)
class PRMetric:
def __init__(self):
self.labels = []
self.predictions = []
@torch.no_grad()
def update(self, labels, predictions, mask=None):
assert labels.shape == predictions.shape
self.labels += (
(labels[mask] if mask is not None else labels).cpu().numpy().tolist()
)
self.predictions += (
(predictions[mask] if mask is not None else predictions)
.cpu()
.numpy()
.tolist()
)
@torch.no_grad()
def compute(self):
return np.array(self.labels), np.array(self.predictions)
def reset(self):
self.labels = []
self.predictions = []
class QuantileMetric:
def __init__(self, q=0.05):
self._elements = []
self.q = q
def update(self, tensor):
assert tensor.dim() == 1
self._elements += tensor.cpu().numpy().tolist()
def compute(self):
if len(self._elements) == 0:
return np.nan
else:
return np.nanquantile(self._elements, self.q)
class RecallMetric:
def __init__(self, ths, elements=[]):
self._elements = elements
self.ths = ths
def update(self, tensor):
assert tensor.dim() == 1
self._elements += tensor.cpu().numpy().tolist()
def compute(self):
if isinstance(self.ths, Iterable):
return [self.compute_(th) for th in self.ths]
else:
return self.compute_(self.ths[0])
def compute_(self, th):
if len(self._elements) == 0:
return np.nan
else:
s = (np.array(self._elements) < th).sum()
return s / len(self._elements)
def cal_error_auc(errors, thresholds):
sort_idx = np.argsort(errors)
errors = np.array(errors.copy())[sort_idx]
recall = (np.arange(len(errors)) + 1) / len(errors)
errors = np.r_[0.0, errors]
recall = np.r_[0.0, recall]
aucs = []
for t in thresholds:
last_index = np.searchsorted(errors, t)
r = np.r_[recall[:last_index], recall[last_index - 1]]
e = np.r_[errors[:last_index], t]
aucs.append(np.round((np.trapz(r, x=e) / t), 4))
return aucs
class AUCMetric:
def __init__(self, thresholds, elements=None):
self._elements = elements
self.thresholds = thresholds
if not isinstance(thresholds, list):
self.thresholds = [thresholds]
def update(self, tensor):
assert tensor.dim() == 1
self._elements += tensor.cpu().numpy().tolist()
def compute(self):
if len(self._elements) == 0:
return np.nan
else:
return cal_error_auc(self._elements, self.thresholds)
class Timer(object):
"""A simpler timer context object.
Usage:
```
> with Timer('mytimer'):
> # some computations
[mytimer] Elapsed: X
```
"""
def __init__(self, name=None):
self.name = name
def __enter__(self):
self.tstart = time.time()
return self
def __exit__(self, type, value, traceback):
self.duration = time.time() - self.tstart
if self.name is not None:
print("[%s] Elapsed: %s" % (self.name, self.duration))
def get_class(mod_path, BaseClass):
"""Get the class object which inherits from BaseClass and is defined in
the module named mod_name, child of base_path.
"""
import inspect
mod = __import__(mod_path, fromlist=[""])
classes = inspect.getmembers(mod, inspect.isclass)
# Filter classes defined in the module
classes = [c for c in classes if c[1].__module__ == mod_path]
# Filter classes inherited from BaseModel
classes = [c for c in classes if issubclass(c[1], BaseClass)]
assert len(classes) == 1, classes
return classes[0][1]
def set_num_threads(nt):
"""Force numpy and other libraries to use a limited number of threads."""
try:
import mkl
except ImportError:
pass
else:
mkl.set_num_threads(nt)
torch.set_num_threads(1)
os.environ["IPC_ENABLE"] = "1"
for o in [
"OPENBLAS_NUM_THREADS",
"NUMEXPR_NUM_THREADS",
"OMP_NUM_THREADS",
"MKL_NUM_THREADS",
]:
os.environ[o] = str(nt)
def set_seed(seed):
random.seed(seed)
torch.manual_seed(seed)
np.random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def get_random_state(with_cuda):
pth_state = torch.get_rng_state()
np_state = np.random.get_state()
py_state = random.getstate()
if torch.cuda.is_available() and with_cuda:
cuda_state = torch.cuda.get_rng_state_all()
else:
cuda_state = None
return pth_state, np_state, py_state, cuda_state
def set_random_state(state):
pth_state, np_state, py_state, cuda_state = state
torch.set_rng_state(pth_state)
np.random.set_state(np_state)
random.setstate(py_state)
if (
cuda_state is not None
and torch.cuda.is_available()
and len(cuda_state) == torch.cuda.device_count()
):
torch.cuda.set_rng_state_all(cuda_state)
@contextmanager
def fork_rng(seed=None, with_cuda=True):
state = get_random_state(with_cuda)
if seed is not None:
set_seed(seed)
try:
yield
finally:
set_random_state(state)
|