Spaces:
Running
Running
File size: 2,436 Bytes
7a991bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
## Steps to reproduce synthetic training data using the Habitat-Sim simulator
### Create a conda environment
```bash
conda create -n habitat python=3.8 habitat-sim=0.2.1 headless=2.0 -c aihabitat -c conda-forge
conda active habitat
conda install pytorch -c pytorch
pip install opencv-python tqdm
```
or (if you get the error `For headless systems, compile with --headless for EGL support`)
```
git clone --branch stable https://github.com/facebookresearch/habitat-sim.git
cd habitat-sim
conda create -n habitat python=3.9 cmake=3.14.0
conda activate habitat
pip install . -v
conda install pytorch -c pytorch
pip install opencv-python tqdm
```
### Download Habitat-Sim scenes
Download Habitat-Sim scenes:
- Download links can be found here: https://github.com/facebookresearch/habitat-sim/blob/main/DATASETS.md
- We used scenes from the HM3D, habitat-test-scenes, ReplicaCad and ScanNet datasets.
- Please put the scenes in a directory `$SCENES_DIR` following the structure below:
(Note: the habitat-sim dataset installer may install an incompatible version for ReplicaCAD backed lighting.
The correct scene dataset can be dowloaded from Huggingface: `git clone git@hf.co:datasets/ai-habitat/ReplicaCAD_baked_lighting`).
```
$SCENES_DIR/
├──hm3d/
├──gibson/
├──habitat-test-scenes/
├──ReplicaCAD_baked_lighting/
└──scannet/
```
### Download renderings metadata
Download metadata corresponding to each scene and extract them into a directory `$METADATA_DIR`
```bash
wget https://download.europe.naverlabs.com/ComputerVision/DUSt3R/habitat_5views_v1_512x512_metadata.tar.gz
tar -xvzf habitat_5views_v1_512x512_metadata.tar.gz
```
### Render the scenes
Render the scenes in an output directory `$OUTPUT_DIR`
```bash
export METADATA_DIR="/path/to/habitat/5views_v1_512x512_metadata"
export SCENES_DIR="/path/to/habitat/data/scene_datasets/"
export OUTPUT_DIR="data/habitat_processed"
cd datasets_preprocess/habitat/
export PYTHONPATH=$(pwd)
# Print commandlines to generate images corresponding to each scene
python preprocess_habitat.py --scenes_dir=$SCENES_DIR --metadata_dir=$METADATA_DIR --output_dir=$OUTPUT_DIR
# Launch these commandlines in parallel e.g. using GNU-Parallel as follows:
python preprocess_habitat.py --scenes_dir=$SCENES_DIR --metadata_dir=$METADATA_DIR --output_dir=$OUTPUT_DIR | parallel -j 16
```
### Make a list of scenes
```bash
python find_scenes.py --root $OUTPUT_DIR
``` |