Spaces:
Running
Running
File size: 5,373 Bytes
7a991bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Preprocessing code for the BlendedMVS dataset
# dataset at https://github.com/YoYo000/BlendedMVS
# 1) Download BlendedMVS.zip
# 2) Download BlendedMVS+.zip
# 3) Download BlendedMVS++.zip
# 4) Unzip everything in the same /path/to/tmp/blendedMVS/ directory
# 5) python datasets_preprocess/preprocess_blendedMVS.py --blendedmvs_dir /path/to/tmp/blendedMVS/
# --------------------------------------------------------
import os
import os.path as osp
import re
from tqdm import tqdm
import numpy as np
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
import cv2
import path_to_root # noqa
from dust3r.utils.parallel import parallel_threads
from dust3r.datasets.utils import cropping # noqa
def get_parser():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--blendedmvs_dir', required=True)
parser.add_argument('--precomputed_pairs', required=True)
parser.add_argument('--output_dir', default='data/blendedmvs_processed')
return parser
def main(db_root, pairs_path, output_dir):
print('>> Listing all sequences')
sequences = [f for f in os.listdir(db_root) if len(f) == 24]
# should find 502 scenes
assert sequences, f'did not found any sequences at {db_root}'
print(f' (found {len(sequences)} sequences)')
for i, seq in enumerate(tqdm(sequences)):
out_dir = osp.join(output_dir, seq)
os.makedirs(out_dir, exist_ok=True)
# generate the crops
root = osp.join(db_root, seq)
cam_dir = osp.join(root, 'cams')
func_args = [(root, f[:-8], out_dir) for f in os.listdir(cam_dir) if not f.startswith('pair')]
parallel_threads(load_crop_and_save, func_args, star_args=True, leave=False)
# verify that all pairs are there
pairs = np.load(pairs_path)
for seqh, seql, img1, img2, score in tqdm(pairs):
for view_index in [img1, img2]:
impath = osp.join(output_dir, f"{seqh:08x}{seql:016x}", f"{view_index:08n}.jpg")
assert osp.isfile(impath), f'missing image at {impath=}'
print(f'>> Done, saved everything in {output_dir}/')
def load_crop_and_save(root, img, out_dir):
if osp.isfile(osp.join(out_dir, img + '.npz')):
return # already done
# load everything
intrinsics_in, R_camin2world, t_camin2world = _load_pose(osp.join(root, 'cams', img + '_cam.txt'))
color_image_in = cv2.cvtColor(cv2.imread(osp.join(root, 'blended_images', img +
'.jpg'), cv2.IMREAD_COLOR), cv2.COLOR_BGR2RGB)
depthmap_in = load_pfm_file(osp.join(root, 'rendered_depth_maps', img + '.pfm'))
# do the crop
H, W = color_image_in.shape[:2]
assert H * 4 == W * 3
image, depthmap, intrinsics_out, R_in2out = _crop_image(intrinsics_in, color_image_in, depthmap_in, (512, 384))
# write everything
image.save(osp.join(out_dir, img + '.jpg'), quality=80)
cv2.imwrite(osp.join(out_dir, img + '.exr'), depthmap)
# New camera parameters
R_camout2world = R_camin2world @ R_in2out.T
t_camout2world = t_camin2world
np.savez(osp.join(out_dir, img + '.npz'), intrinsics=intrinsics_out,
R_cam2world=R_camout2world, t_cam2world=t_camout2world)
def _crop_image(intrinsics_in, color_image_in, depthmap_in, resolution_out=(800, 800)):
image, depthmap, intrinsics_out = cropping.rescale_image_depthmap(
color_image_in, depthmap_in, intrinsics_in, resolution_out)
R_in2out = np.eye(3)
return image, depthmap, intrinsics_out, R_in2out
def _load_pose(path, ret_44=False):
f = open(path)
RT = np.loadtxt(f, skiprows=1, max_rows=4, dtype=np.float32)
assert RT.shape == (4, 4)
RT = np.linalg.inv(RT) # world2cam to cam2world
K = np.loadtxt(f, skiprows=2, max_rows=3, dtype=np.float32)
assert K.shape == (3, 3)
if ret_44:
return K, RT
return K, RT[:3, :3], RT[:3, 3] # , depth_uint8_to_f32
def load_pfm_file(file_path):
with open(file_path, 'rb') as file:
header = file.readline().decode('UTF-8').strip()
if header == 'PF':
is_color = True
elif header == 'Pf':
is_color = False
else:
raise ValueError('The provided file is not a valid PFM file.')
dimensions = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode('UTF-8'))
if dimensions:
img_width, img_height = map(int, dimensions.groups())
else:
raise ValueError('Invalid PFM header format.')
endian_scale = float(file.readline().decode('UTF-8').strip())
if endian_scale < 0:
dtype = '<f' # little-endian
else:
dtype = '>f' # big-endian
data_buffer = file.read()
img_data = np.frombuffer(data_buffer, dtype=dtype)
if is_color:
img_data = np.reshape(img_data, (img_height, img_width, 3))
else:
img_data = np.reshape(img_data, (img_height, img_width))
img_data = cv2.flip(img_data, 0)
return img_data
if __name__ == '__main__':
parser = get_parser()
args = parser.parse_args()
main(args.blendedmvs_dir, args.precomputed_pairs, args.output_dir)
|