Spaces:
Running
Running
File size: 3,825 Bytes
dbf8b7e 5c75947 dbf8b7e 0563d21 dbf8b7e 0563d21 dbf8b7e 0563d21 dbf8b7e 5c75947 dbf8b7e 0563d21 dbf8b7e 0563d21 dbf8b7e 5c75947 0563d21 5c75947 dbf8b7e 5c75947 dbf8b7e 5c75947 dbf8b7e 0563d21 dbf8b7e 0563d21 dbf8b7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
from tqdm import tqdm
from romatch.utils.utils import to_cuda
import romatch
import torch
import wandb
def log_param_statistics(named_parameters, norm_type = 2):
named_parameters = list(named_parameters)
grads = [p.grad for n, p in named_parameters if p.grad is not None]
weight_norms = [p.norm(p=norm_type) for n, p in named_parameters if p.grad is not None]
names = [n for n,p in named_parameters if p.grad is not None]
param_norm = torch.stack(weight_norms).norm(p=norm_type)
device = grads[0].device
grad_norms = torch.stack([torch.norm(g.detach(), norm_type).to(device) for g in grads])
nans_or_infs = torch.isinf(grad_norms) | torch.isnan(grad_norms)
nan_inf_names = [name for name, naninf in zip(names, nans_or_infs) if naninf]
total_grad_norm = torch.norm(grad_norms, norm_type)
if torch.any(nans_or_infs):
print(f"These params have nan or inf grads: {nan_inf_names}")
wandb.log({"grad_norm": total_grad_norm.item()}, step = romatch.GLOBAL_STEP)
wandb.log({"param_norm": param_norm.item()}, step = romatch.GLOBAL_STEP)
def train_step(train_batch, model, objective, optimizer, grad_scaler, grad_clip_norm = 1.,**kwargs):
optimizer.zero_grad()
out = model(train_batch)
l = objective(out, train_batch)
grad_scaler.scale(l).backward()
grad_scaler.unscale_(optimizer)
log_param_statistics(model.named_parameters())
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip_norm) # what should max norm be?
grad_scaler.step(optimizer)
grad_scaler.update()
wandb.log({"grad_scale": grad_scaler._scale.item()}, step = romatch.GLOBAL_STEP)
if grad_scaler._scale < 1.:
grad_scaler._scale = torch.tensor(1.).to(grad_scaler._scale)
romatch.GLOBAL_STEP = romatch.GLOBAL_STEP + romatch.STEP_SIZE # increment global step
return {"train_out": out, "train_loss": l.item()}
def train_k_steps(
n_0, k, dataloader, model, objective, optimizer, lr_scheduler, grad_scaler, progress_bar=True, grad_clip_norm = 1., warmup = None, ema_model = None, pbar_n_seconds = 1,
):
for n in tqdm(range(n_0, n_0 + k), disable=(not progress_bar) or romatch.RANK > 0, mininterval=pbar_n_seconds):
batch = next(dataloader)
model.train(True)
batch = to_cuda(batch)
train_step(
train_batch=batch,
model=model,
objective=objective,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
grad_scaler=grad_scaler,
n=n,
grad_clip_norm = grad_clip_norm,
)
if ema_model is not None:
ema_model.update()
if warmup is not None:
with warmup.dampening():
lr_scheduler.step()
else:
lr_scheduler.step()
[wandb.log({f"lr_group_{grp}": lr}) for grp, lr in enumerate(lr_scheduler.get_last_lr())]
def train_epoch(
dataloader=None,
model=None,
objective=None,
optimizer=None,
lr_scheduler=None,
epoch=None,
):
model.train(True)
print(f"At epoch {epoch}")
for batch in tqdm(dataloader, mininterval=5.0):
batch = to_cuda(batch)
train_step(
train_batch=batch, model=model, objective=objective, optimizer=optimizer
)
lr_scheduler.step()
return {
"model": model,
"optimizer": optimizer,
"lr_scheduler": lr_scheduler,
"epoch": epoch,
}
def train_k_epochs(
start_epoch, end_epoch, dataloader, model, objective, optimizer, lr_scheduler
):
for epoch in range(start_epoch, end_epoch + 1):
train_epoch(
dataloader=dataloader,
model=model,
objective=objective,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
epoch=epoch,
)
|