Spaces:
Running
Running
File size: 3,481 Bytes
c0283b3 34aafe5 c0283b3 34aafe5 c0283b3 34aafe5 c0283b3 d41cdad e605f29 c0283b3 e605f29 c0283b3 34aafe5 e605f29 34aafe5 c0283b3 34aafe5 c0283b3 d41cdad e605f29 e3c24ce e605f29 e3c24ce 95977e1 e3c24ce 95977e1 e605f29 95977e1 e3c24ce 95977e1 e3c24ce 95977e1 e3c24ce 95977e1 e3c24ce 95977e1 e3c24ce 95977e1 e605f29 95977e1 e605f29 c0283b3 e605f29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
import cv2
import warnings
import numpy as np
from pathlib import Path
from hloc import logger
from common.utils import (
get_matcher_zoo,
load_config,
device,
ROOT,
)
from common.api import ImageMatchingAPI
def test_all(config: dict = None):
img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg"
img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
image0 = cv2.imread(str(img_path1))[:, :, ::-1] # RGB
image1 = cv2.imread(str(img_path2))[:, :, ::-1] # RGB
matcher_zoo_restored = get_matcher_zoo(config["matcher_zoo"])
for k, v in matcher_zoo_restored.items():
if image0 is None or image1 is None:
logger.error("Error: No images found! Please upload two images.")
enable = config["matcher_zoo"][k].get("enable", True)
if enable:
logger.info(f"Testing {k} ...")
api = ImageMatchingAPI(conf=v, device=device)
api(image0, image1)
log_path = ROOT / "experiments" / "all"
log_path.mkdir(exist_ok=True, parents=True)
api.visualize(log_path=log_path)
else:
logger.info(f"Skipping {k} ...")
def test_one():
img_path1 = ROOT / "datasets/sacre_coeur/mapping/02928139_3448003521.jpg"
img_path2 = ROOT / "datasets/sacre_coeur/mapping/17295357_9106075285.jpg"
image0 = cv2.imread(str(img_path1))[:, :, ::-1] # RGB
image1 = cv2.imread(str(img_path2))[:, :, ::-1] # RGB
# sparse
conf = {
"feature": {
"output": "feats-superpoint-n4096-rmax1600",
"model": {
"name": "superpoint",
"nms_radius": 3,
"max_keypoints": 4096,
"keypoint_threshold": 0.005,
},
"preprocessing": {
"grayscale": True,
"force_resize": True,
"resize_max": 1600,
"width": 640,
"height": 480,
"dfactor": 8,
},
},
"matcher": {
"output": "matches-NN-mutual",
"model": {
"name": "nearest_neighbor",
"do_mutual_check": True,
"match_threshold": 0.2,
},
},
"dense": False,
}
api = ImageMatchingAPI(conf=conf, device=device)
api(image0, image1)
log_path = ROOT / "experiments" / "one"
log_path.mkdir(exist_ok=True, parents=True)
api.visualize(log_path=log_path)
# dense
conf = {
"matcher": {
"output": "matches-loftr",
"model": {
"name": "loftr",
"weights": "outdoor",
"max_keypoints": 2000,
"match_threshold": 0.2,
},
"preprocessing": {
"grayscale": True,
"resize_max": 1024,
"dfactor": 8,
"width": 640,
"height": 480,
"force_resize": True,
},
"max_error": 1,
"cell_size": 1,
},
"dense": True,
}
api = ImageMatchingAPI(conf=conf, device=device)
api(image0, image1)
log_path = ROOT / "experiments" / "one"
log_path.mkdir(exist_ok=True, parents=True)
api.visualize(log_path=log_path)
if __name__ == "__main__":
import argparse
config = load_config(ROOT / "common/config.yaml")
test_one()
test_all(config)
|