File size: 4,740 Bytes
f90cbcf
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
 
 
f90cbcf
4c12b36
f90cbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
f90cbcf
 
 
 
 
 
4c12b36
 
f90cbcf
 
4c12b36
 
f90cbcf
 
 
 
 
 
4c12b36
 
f90cbcf
 
4c12b36
 
f90cbcf
 
 
 
 
 
4c12b36
 
f90cbcf
 
4c12b36
 
f90cbcf
 
 
 
 
 
 
 
4c12b36
f90cbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
 
 
 
 
 
 
 
 
 
 
f90cbcf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch

from torch import nn
from ..dkm import *
from ..encoders import *


def DKMv3(
    weights,
    h,
    w,
    symmetric=True,
    sample_mode="threshold_balanced",
    device=None,
    **kwargs
):
    if device is None:
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    gp_dim = 256
    dfn_dim = 384
    feat_dim = 256
    coordinate_decoder = DFN(
        internal_dim=dfn_dim,
        feat_input_modules=nn.ModuleDict(
            {
                "32": nn.Conv2d(512, feat_dim, 1, 1),
                "16": nn.Conv2d(512, feat_dim, 1, 1),
            }
        ),
        pred_input_modules=nn.ModuleDict(
            {
                "32": nn.Identity(),
                "16": nn.Identity(),
            }
        ),
        rrb_d_dict=nn.ModuleDict(
            {
                "32": RRB(gp_dim + feat_dim, dfn_dim),
                "16": RRB(gp_dim + feat_dim, dfn_dim),
            }
        ),
        cab_dict=nn.ModuleDict(
            {
                "32": CAB(2 * dfn_dim, dfn_dim),
                "16": CAB(2 * dfn_dim, dfn_dim),
            }
        ),
        rrb_u_dict=nn.ModuleDict(
            {
                "32": RRB(dfn_dim, dfn_dim),
                "16": RRB(dfn_dim, dfn_dim),
            }
        ),
        terminal_module=nn.ModuleDict(
            {
                "32": nn.Conv2d(dfn_dim, 3, 1, 1, 0),
                "16": nn.Conv2d(dfn_dim, 3, 1, 1, 0),
            }
        ),
    )
    dw = True
    hidden_blocks = 8
    kernel_size = 5
    displacement_emb = "linear"
    conv_refiner = nn.ModuleDict(
        {
            "16": ConvRefiner(
                2 * 512 + 128 + (2 * 7 + 1) ** 2,
                2 * 512 + 128 + (2 * 7 + 1) ** 2,
                3,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=128,
                local_corr_radius=7,
                corr_in_other=True,
            ),
            "8": ConvRefiner(
                2 * 512 + 64 + (2 * 3 + 1) ** 2,
                2 * 512 + 64 + (2 * 3 + 1) ** 2,
                3,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=64,
                local_corr_radius=3,
                corr_in_other=True,
            ),
            "4": ConvRefiner(
                2 * 256 + 32 + (2 * 2 + 1) ** 2,
                2 * 256 + 32 + (2 * 2 + 1) ** 2,
                3,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=32,
                local_corr_radius=2,
                corr_in_other=True,
            ),
            "2": ConvRefiner(
                2 * 64 + 16,
                128 + 16,
                3,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=16,
            ),
            "1": ConvRefiner(
                2 * 3 + 6,
                24,
                3,
                kernel_size=kernel_size,
                dw=dw,
                hidden_blocks=hidden_blocks,
                displacement_emb=displacement_emb,
                displacement_emb_dim=6,
            ),
        }
    )
    kernel_temperature = 0.2
    learn_temperature = False
    no_cov = True
    kernel = CosKernel
    only_attention = False
    basis = "fourier"
    gp32 = GP(
        kernel,
        T=kernel_temperature,
        learn_temperature=learn_temperature,
        only_attention=only_attention,
        gp_dim=gp_dim,
        basis=basis,
        no_cov=no_cov,
    )
    gp16 = GP(
        kernel,
        T=kernel_temperature,
        learn_temperature=learn_temperature,
        only_attention=only_attention,
        gp_dim=gp_dim,
        basis=basis,
        no_cov=no_cov,
    )
    gps = nn.ModuleDict({"32": gp32, "16": gp16})
    proj = nn.ModuleDict(
        {"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)}
    )
    decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True)

    encoder = ResNet50(pretrained=False, high_res=False, freeze_bn=False)
    matcher = RegressionMatcher(
        encoder,
        decoder,
        h=h,
        w=w,
        name="DKMv3",
        sample_mode=sample_mode,
        symmetric=symmetric,
        **kwargs
    ).to(device)
    res = matcher.load_state_dict(weights)
    return matcher