Spaces:
Running
Running
File size: 2,814 Bytes
437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 4c12b36 437b5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import numpy as np
import random
from scipy.stats import tukeylambda
camera_params = {
"Kmin": 0.2181895124454343,
"Kmax": 3.0,
"G_shape": np.array(
[
0.15714286,
0.14285714,
0.08571429,
0.08571429,
0.2,
0.2,
0.1,
0.08571429,
0.05714286,
0.07142857,
0.02857143,
0.02857143,
0.01428571,
0.02857143,
0.08571429,
0.07142857,
0.11428571,
0.11428571,
]
),
"Profile-1": {
"R_scale": {
"slope": 0.4712797750747537,
"bias": -0.8078958947116487,
"sigma": 0.2436176299944695,
},
"g_scale": {
"slope": 0.6771267783987617,
"bias": 1.5121876510805845,
"sigma": 0.24641096601611254,
},
"G_scale": {
"slope": 0.6558756156508007,
"bias": 1.09268679594838,
"sigma": 0.28604721742277756,
},
},
"black_level": 2048,
"max_value": 16383,
}
# photon shot noise
def addPStarNoise(img, K):
return np.random.poisson(img / K).astype(np.float32) * K
# read noise
# tukey lambda distribution
def addGStarNoise(img, K, G_shape, G_scale_param):
# sample a shape parameter [lambda] from histogram of samples
a, b = np.histogram(G_shape, bins=10, range=(-0.25, 0.25))
a, b = np.array(a), np.array(b)
a = a / a.sum()
rand_num = random.uniform(0, 1)
idx = np.sum(np.cumsum(a) < rand_num)
lam = random.uniform(b[idx], b[idx + 1])
# calculate scale parameter [G_scale]
log_K = np.log(K)
log_G_scale = (
np.random.standard_normal() * G_scale_param["sigma"] * 1
+ G_scale_param["slope"] * log_K
+ G_scale_param["bias"]
)
G_scale = np.exp(log_G_scale)
# print(f'G_scale: {G_scale}')
return img + tukeylambda.rvs(lam, scale=G_scale, size=img.shape).astype(np.float32)
# row noise
# uniform distribution for each row
def addRowNoise(img, K, R_scale_param):
# calculate scale parameter [R_scale]
log_K = np.log(K)
log_R_scale = (
np.random.standard_normal() * R_scale_param["sigma"] * 1
+ R_scale_param["slope"] * log_K
+ R_scale_param["bias"]
)
R_scale = np.exp(log_R_scale)
# print(f'R_scale: {R_scale}')
row_noise = np.random.randn(img.shape[0], 1).astype(np.float32) * R_scale
return img + np.tile(row_noise, (1, img.shape[1]))
# quantization noise
# uniform distribution
def addQuantNoise(img, q):
return img + np.random.uniform(low=-0.5 * q, high=0.5 * q, size=img.shape)
def sampleK(Kmin, Kmax):
return np.exp(np.random.uniform(low=np.log(Kmin), high=np.log(Kmax)))
|