File size: 4,395 Bytes
f90cbcf
 
 
 
 
 
 
 
 
 
90701a0
 
f90cbcf
 
4a37969
f90cbcf
 
 
 
4a37969
f90cbcf
4a37969
 
f90cbcf
 
 
 
90701a0
f90cbcf
 
4a37969
f90cbcf
4a37969
f90cbcf
 
 
4a37969
f90cbcf
 
4a37969
f90cbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90701a0
f90cbcf
 
 
90701a0
f90cbcf
 
4a37969
f90cbcf
 
 
 
 
4a37969
f90cbcf
 
 
 
90701a0
f90cbcf
 
4a37969
f90cbcf
4a37969
 
 
 
 
f90cbcf
 
 
 
 
 
 
 
 
 
90701a0
f90cbcf
 
4a37969
 
 
f90cbcf
 
4a37969
 
 
f90cbcf
4a37969
f90cbcf
 
 
4a37969
 
 
f90cbcf
 
4a37969
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from typing import Optional, Union
import torch
from torch import device
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm
import gc


class ResNet50(nn.Module):
    def __init__(self, pretrained=False, high_res = False, weights = None, 
                 dilation = None, freeze_bn = True, anti_aliased = False, early_exit = False, amp = False, amp_dtype = torch.float16) -> None:
        super().__init__()
        if dilation is None:
            dilation = [False,False,False]
        if anti_aliased:
            pass
        else:
            if weights is not None:
                self.net = tvm.resnet50(weights = weights,replace_stride_with_dilation=dilation)
            else:
                self.net = tvm.resnet50(pretrained=pretrained,replace_stride_with_dilation=dilation)
            
        self.high_res = high_res
        self.freeze_bn = freeze_bn
        self.early_exit = early_exit
        self.amp = amp
        self.amp_dtype = amp_dtype

    def forward(self, x, **kwargs):
        with torch.autocast("cuda", enabled=self.amp, dtype = self.amp_dtype):
            net = self.net
            feats = {1:x}
            x = net.conv1(x)
            x = net.bn1(x)
            x = net.relu(x)
            feats[2] = x 
            x = net.maxpool(x)
            x = net.layer1(x)
            feats[4] = x 
            x = net.layer2(x)
            feats[8] = x
            if self.early_exit:
                return feats
            x = net.layer3(x)
            feats[16] = x
            x = net.layer4(x)
            feats[32] = x
            return feats

    def train(self, mode=True):
        super().train(mode)
        if self.freeze_bn:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                pass

class VGG19(nn.Module):
    def __init__(self, pretrained=False, amp = False, amp_dtype = torch.float16) -> None:
        super().__init__()
        self.layers = nn.ModuleList(tvm.vgg19_bn(pretrained=pretrained).features[:40])
        self.amp = amp
        self.amp_dtype = amp_dtype

    def forward(self, x, **kwargs):
        with torch.autocast("cuda", enabled=self.amp, dtype = self.amp_dtype):
            feats = {}
            scale = 1
            for layer in self.layers:
                if isinstance(layer, nn.MaxPool2d):
                    feats[scale] = x
                    scale = scale*2
                x = layer(x)
            return feats

class CNNandDinov2(nn.Module):
    def __init__(self, cnn_kwargs = None, amp = False, use_vgg = False, dinov2_weights = None, amp_dtype = torch.float16):
        super().__init__()
        if dinov2_weights is None:
            dinov2_weights = torch.hub.load_state_dict_from_url("https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth", map_location="cpu")
        from .transformer import vit_large
        vit_kwargs = dict(img_size= 518,
            patch_size= 14,
            init_values = 1.0,
            ffn_layer = "mlp",
            block_chunks = 0,
        )

        dinov2_vitl14 = vit_large(**vit_kwargs).eval()
        dinov2_vitl14.load_state_dict(dinov2_weights)
        cnn_kwargs = cnn_kwargs if cnn_kwargs is not None else {}
        if not use_vgg:
            self.cnn = ResNet50(**cnn_kwargs)
        else:
            self.cnn = VGG19(**cnn_kwargs)
        self.amp = amp
        self.amp_dtype = amp_dtype
        if self.amp:
            dinov2_vitl14 = dinov2_vitl14.to(self.amp_dtype)
        self.dinov2_vitl14 = [dinov2_vitl14] # ugly hack to not show parameters to DDP
    
    
    def train(self, mode: bool = True):
        return self.cnn.train(mode)
    
    def forward(self, x, upsample = False):
        B,C,H,W = x.shape
        feature_pyramid = self.cnn(x)
        
        if not upsample:
            with torch.no_grad():
                if self.dinov2_vitl14[0].device != x.device:
                    self.dinov2_vitl14[0] = self.dinov2_vitl14[0].to(x.device).to(self.amp_dtype)
                dinov2_features_16 = self.dinov2_vitl14[0].forward_features(x.to(self.amp_dtype))
                features_16 = dinov2_features_16['x_norm_patchtokens'].permute(0,2,1).reshape(B,1024,H//14, W//14)
                del dinov2_features_16
                feature_pyramid[16] = features_16
        return feature_pyramid