File size: 6,814 Bytes
437b5f6
 
 
 
 
4c12b36
437b5f6
4c12b36
 
437b5f6
 
 
 
 
 
 
 
 
4c12b36
 
437b5f6
 
4c12b36
 
 
 
 
437b5f6
 
 
 
4c12b36
 
437b5f6
4c12b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437b5f6
4c12b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437b5f6
 
 
 
 
4c12b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437b5f6
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
437b5f6
4c12b36
 
 
 
437b5f6
4c12b36
 
437b5f6
4c12b36
 
 
437b5f6
4c12b36
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import torch.nn as nn
import time


eps = 1e-8


def sinkhorn(M, r, c, iteration):
    p = torch.softmax(M, dim=-1)
    u = torch.ones_like(r)
    v = torch.ones_like(c)
    for _ in range(iteration):
        u = r / ((p * v.unsqueeze(-2)).sum(-1) + eps)
        v = c / ((p * u.unsqueeze(-1)).sum(-2) + eps)
    p = p * u.unsqueeze(-1) * v.unsqueeze(-2)
    return p


def sink_algorithm(M, dustbin, iteration):
    M = torch.cat([M, dustbin.expand([M.shape[0], M.shape[1], 1])], dim=-1)
    M = torch.cat([M, dustbin.expand([M.shape[0], 1, M.shape[2]])], dim=-2)
    r = torch.ones([M.shape[0], M.shape[1] - 1], device="cuda")
    r = torch.cat([r, torch.ones([M.shape[0], 1], device="cuda") * M.shape[1]], dim=-1)
    c = torch.ones([M.shape[0], M.shape[2] - 1], device="cuda")
    c = torch.cat([c, torch.ones([M.shape[0], 1], device="cuda") * M.shape[2]], dim=-1)
    p = sinkhorn(M, r, c, iteration)
    return p


class attention_block(nn.Module):
    def __init__(self, channels, head, type):
        assert type == "self" or type == "cross", "invalid attention type"
        nn.Module.__init__(self)
        self.head = head
        self.type = type
        self.head_dim = channels // head
        self.query_filter = nn.Conv1d(channels, channels, kernel_size=1)
        self.key_filter = nn.Conv1d(channels, channels, kernel_size=1)
        self.value_filter = nn.Conv1d(channels, channels, kernel_size=1)
        self.attention_filter = nn.Sequential(
            nn.Conv1d(2 * channels, 2 * channels, kernel_size=1),
            nn.SyncBatchNorm(2 * channels),
            nn.ReLU(),
            nn.Conv1d(2 * channels, channels, kernel_size=1),
        )
        self.mh_filter = nn.Conv1d(channels, channels, kernel_size=1)

    def forward(self, fea1, fea2):
        batch_size, n, m = fea1.shape[0], fea1.shape[2], fea2.shape[2]
        query1, key1, value1 = (
            self.query_filter(fea1).view(batch_size, self.head_dim, self.head, -1),
            self.key_filter(fea1).view(batch_size, self.head_dim, self.head, -1),
            self.value_filter(fea1).view(batch_size, self.head_dim, self.head, -1),
        )
        query2, key2, value2 = (
            self.query_filter(fea2).view(batch_size, self.head_dim, self.head, -1),
            self.key_filter(fea2).view(batch_size, self.head_dim, self.head, -1),
            self.value_filter(fea2).view(batch_size, self.head_dim, self.head, -1),
        )
        if self.type == "self":
            score1, score2 = torch.softmax(
                torch.einsum("bdhn,bdhm->bhnm", query1, key1) / self.head_dim**0.5,
                dim=-1,
            ), torch.softmax(
                torch.einsum("bdhn,bdhm->bhnm", query2, key2) / self.head_dim**0.5,
                dim=-1,
            )
            add_value1, add_value2 = torch.einsum(
                "bhnm,bdhm->bdhn", score1, value1
            ), torch.einsum("bhnm,bdhm->bdhn", score2, value2)
        else:
            score1, score2 = torch.softmax(
                torch.einsum("bdhn,bdhm->bhnm", query1, key2) / self.head_dim**0.5,
                dim=-1,
            ), torch.softmax(
                torch.einsum("bdhn,bdhm->bhnm", query2, key1) / self.head_dim**0.5,
                dim=-1,
            )
            add_value1, add_value2 = torch.einsum(
                "bhnm,bdhm->bdhn", score1, value2
            ), torch.einsum("bhnm,bdhm->bdhn", score2, value1)
        add_value1, add_value2 = self.mh_filter(
            add_value1.contiguous().view(batch_size, self.head * self.head_dim, n)
        ), self.mh_filter(
            add_value2.contiguous().view(batch_size, self.head * self.head_dim, m)
        )
        fea11, fea22 = torch.cat([fea1, add_value1], dim=1), torch.cat(
            [fea2, add_value2], dim=1
        )
        fea1, fea2 = fea1 + self.attention_filter(fea11), fea2 + self.attention_filter(
            fea22
        )

        return fea1, fea2


class matcher(nn.Module):
    def __init__(self, config):
        nn.Module.__init__(self)
        self.use_score_encoding = config.use_score_encoding
        self.layer_num = config.layer_num
        self.sink_iter = config.sink_iter
        self.position_encoder = nn.Sequential(
            nn.Conv1d(3, 32, kernel_size=1)
            if config.use_score_encoding
            else nn.Conv1d(2, 32, kernel_size=1),
            nn.SyncBatchNorm(32),
            nn.ReLU(),
            nn.Conv1d(32, 64, kernel_size=1),
            nn.SyncBatchNorm(64),
            nn.ReLU(),
            nn.Conv1d(64, 128, kernel_size=1),
            nn.SyncBatchNorm(128),
            nn.ReLU(),
            nn.Conv1d(128, 256, kernel_size=1),
            nn.SyncBatchNorm(256),
            nn.ReLU(),
            nn.Conv1d(256, config.net_channels, kernel_size=1),
        )

        self.dustbin = nn.Parameter(torch.tensor(1, dtype=torch.float32, device="cuda"))
        self.self_attention_block = nn.Sequential(
            *[
                attention_block(config.net_channels, config.head, "self")
                for _ in range(config.layer_num)
            ]
        )
        self.cross_attention_block = nn.Sequential(
            *[
                attention_block(config.net_channels, config.head, "cross")
                for _ in range(config.layer_num)
            ]
        )
        self.final_project = nn.Conv1d(
            config.net_channels, config.net_channels, kernel_size=1
        )

    def forward(self, data, test_mode=True):
        desc1, desc2 = data["desc1"], data["desc2"]
        desc1, desc2 = torch.nn.functional.normalize(
            desc1, dim=-1
        ), torch.nn.functional.normalize(desc2, dim=-1)
        desc1, desc2 = desc1.transpose(1, 2), desc2.transpose(1, 2)
        if test_mode:
            encode_x1, encode_x2 = data["x1"], data["x2"]
        else:
            encode_x1, encode_x2 = data["aug_x1"], data["aug_x2"]
        if not self.use_score_encoding:
            encode_x1, encode_x2 = encode_x1[:, :, :2], encode_x2[:, :, :2]

        encode_x1, encode_x2 = encode_x1.transpose(1, 2), encode_x2.transpose(1, 2)

        x1_pos_embedding, x2_pos_embedding = self.position_encoder(
            encode_x1
        ), self.position_encoder(encode_x2)
        aug_desc1, aug_desc2 = x1_pos_embedding + desc1, x2_pos_embedding + desc2
        for i in range(self.layer_num):
            aug_desc1, aug_desc2 = self.self_attention_block[i](aug_desc1, aug_desc2)
            aug_desc1, aug_desc2 = self.cross_attention_block[i](aug_desc1, aug_desc2)

        aug_desc1, aug_desc2 = self.final_project(aug_desc1), self.final_project(
            aug_desc2
        )
        desc_mat = torch.matmul(aug_desc1.transpose(1, 2), aug_desc2)
        p = sink_algorithm(desc_mat, self.dustbin, self.sink_iter[0])
        return {"p": p}