File size: 1,651 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import argparse
from collections import defaultdict
from pathlib import Path
from pprint import pprint

import matplotlib
import matplotlib.pyplot as plt

from ..settings import EVAL_PATH
from ..visualization.global_frame import GlobalFrame
from ..visualization.two_view_frame import TwoViewFrame
from . import get_benchmark
from .eval_pipeline import load_eval

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("benchmark", type=str)
    parser.add_argument("--x", type=str, default=None)
    parser.add_argument("--y", type=str, default=None)
    parser.add_argument("--backend", type=str, default=None)
    parser.add_argument(
        "--default_plot", type=str, default=TwoViewFrame.default_conf["default"]
    )

    parser.add_argument("dotlist", nargs="*")
    args = parser.parse_intermixed_args()

    output_dir = Path(EVAL_PATH, args.benchmark)

    results = {}
    summaries = defaultdict(dict)

    predictions = {}

    if args.backend:
        matplotlib.use(args.backend)

    bm = get_benchmark(args.benchmark)
    loader = bm.get_dataloader()

    for name in args.dotlist:
        experiment_dir = output_dir / name
        pred_file = experiment_dir / "predictions.h5"
        s, results[name] = load_eval(experiment_dir)
        predictions[name] = pred_file
        for k, v in s.items():
            summaries[k][name] = v

    pprint(summaries)

    plt.close("all")

    frame = GlobalFrame(
        {"child": {"default": args.default_plot}, **vars(args)},
        results,
        loader,
        predictions,
        child_frame=TwoViewFrame,
    )
    frame.draw()
    plt.show()