Spaces:
Running
Running
File size: 5,805 Bytes
4dfb78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
"""
Base class for trainable models.
"""
from abc import ABCMeta, abstractmethod
from copy import copy
import omegaconf
from omegaconf import OmegaConf
from torch import nn
class MetaModel(ABCMeta):
def __prepare__(name, bases, **kwds):
total_conf = OmegaConf.create()
for base in bases:
for key in ("base_default_conf", "default_conf"):
update = getattr(base, key, {})
if isinstance(update, dict):
update = OmegaConf.create(update)
total_conf = OmegaConf.merge(total_conf, update)
return dict(base_default_conf=total_conf)
class BaseModel(nn.Module, metaclass=MetaModel):
"""
What the child model is expect to declare:
default_conf: dictionary of the default configuration of the model.
It recursively updates the default_conf of all parent classes, and
it is updated by the user-provided configuration passed to __init__.
Configurations can be nested.
required_data_keys: list of expected keys in the input data dictionary.
strict_conf (optional): boolean. If false, BaseModel does not raise
an error when the user provides an unknown configuration entry.
_init(self, conf): initialization method, where conf is the final
configuration object (also accessible with `self.conf`). Accessing
unknown configuration entries will raise an error.
_forward(self, data): method that returns a dictionary of batched
prediction tensors based on a dictionary of batched input data tensors.
loss(self, pred, data): method that returns a dictionary of losses,
computed from model predictions and input data. Each loss is a batch
of scalars, i.e. a torch.Tensor of shape (B,).
The total loss to be optimized has the key `'total'`.
metrics(self, pred, data): method that returns a dictionary of metrics,
each as a batch of scalars.
"""
default_conf = {
"name": None,
"trainable": True, # if false: do not optimize this model parameters
"freeze_batch_normalization": False, # use test-time statistics
"timeit": False, # time forward pass
}
required_data_keys = []
strict_conf = False
are_weights_initialized = False
def __init__(self, conf):
"""Perform some logic and call the _init method of the child model."""
super().__init__()
default_conf = OmegaConf.merge(
self.base_default_conf, OmegaConf.create(self.default_conf)
)
if self.strict_conf:
OmegaConf.set_struct(default_conf, True)
# fixme: backward compatibility
if "pad" in conf and "pad" not in default_conf: # backward compat.
with omegaconf.read_write(conf):
with omegaconf.open_dict(conf):
conf["interpolation"] = {"pad": conf.pop("pad")}
if isinstance(conf, dict):
conf = OmegaConf.create(conf)
self.conf = conf = OmegaConf.merge(default_conf, conf)
OmegaConf.set_readonly(conf, True)
OmegaConf.set_struct(conf, True)
self.required_data_keys = copy(self.required_data_keys)
self._init(conf)
if not conf.trainable:
for p in self.parameters():
p.requires_grad = False
def train(self, mode=True):
super().train(mode)
def freeze_bn(module):
if isinstance(module, nn.modules.batchnorm._BatchNorm):
module.eval()
if self.conf.freeze_batch_normalization:
self.apply(freeze_bn)
return self
def forward(self, data):
"""Check the data and call the _forward method of the child model."""
def recursive_key_check(expected, given):
for key in expected:
assert key in given, f"Missing key {key} in data"
if isinstance(expected, dict):
recursive_key_check(expected[key], given[key])
recursive_key_check(self.required_data_keys, data)
return self._forward(data)
@abstractmethod
def _init(self, conf):
"""To be implemented by the child class."""
raise NotImplementedError
@abstractmethod
def _forward(self, data):
"""To be implemented by the child class."""
raise NotImplementedError
@abstractmethod
def loss(self, pred, data):
"""To be implemented by the child class."""
raise NotImplementedError
def load_state_dict(self, *args, **kwargs):
"""Load the state dict of the model, and set the model to initialized."""
ret = super().load_state_dict(*args, **kwargs)
self.set_initialized()
return ret
def is_initialized(self):
"""Recursively check if the model is initialized, i.e. weights are loaded"""
is_initialized = True # initialize to true and perform recursive and
for _, w in self.named_children():
if isinstance(w, BaseModel):
# if children is BaseModel, we perform recursive check
is_initialized = is_initialized and w.is_initialized()
else:
# else, we check if self is initialized or the children has no params
n_params = len(list(w.parameters()))
is_initialized = is_initialized and (
n_params == 0 or self.are_weights_initialized
)
return is_initialized
def set_initialized(self, to: bool = True):
"""Recursively set the initialization state."""
self.are_weights_initialized = to
for _, w in self.named_parameters():
if isinstance(w, BaseModel):
w.set_initialized(to)
|