File size: 12,211 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import torch
from sklearn.cluster import DBSCAN

from .. import get_model
from ..base_model import BaseModel


def sample_descriptors_corner_conv(keypoints, descriptors, s: int = 8):
    """Interpolate descriptors at keypoint locations"""
    b, c, h, w = descriptors.shape
    keypoints = keypoints / (keypoints.new_tensor([w, h]) * s)
    keypoints = keypoints * 2 - 1  # normalize to (-1, 1)
    descriptors = torch.nn.functional.grid_sample(
        descriptors, keypoints.view(b, 1, -1, 2), mode="bilinear", align_corners=False
    )
    descriptors = torch.nn.functional.normalize(
        descriptors.reshape(b, c, -1), p=2, dim=1
    )
    return descriptors


def lines_to_wireframe(
    lines, line_scores, all_descs, s, nms_radius, force_num_lines, max_num_lines
):
    """Given a set of lines, their score and dense descriptors,
        merge close-by endpoints and compute a wireframe defined by
        its junctions and connectivity.
    Returns:
        junctions: list of [num_junc, 2] tensors listing all wireframe junctions
        junc_scores: list of [num_junc] tensors with the junction score
        junc_descs: list of [dim, num_junc] tensors with the junction descriptors
        connectivity: list of [num_junc, num_junc] bool arrays with True when 2
        junctions are connected
        new_lines: the new set of [b_size, num_lines, 2, 2] lines
        lines_junc_idx: a [b_size, num_lines, 2] tensor with the indices of the
        junctions of each endpoint
        num_true_junctions: a list of the number of valid junctions for each image
        in the batch, i.e. before filling with random ones
    """
    b_size, _, h, w = all_descs.shape
    device = lines.device
    h, w = h * s, w * s
    endpoints = lines.reshape(b_size, -1, 2)

    (
        junctions,
        junc_scores,
        connectivity,
        new_lines,
        lines_junc_idx,
        num_true_junctions,
    ) = ([], [], [], [], [], [])
    for bs in range(b_size):
        # Cluster the junctions that are close-by
        db = DBSCAN(eps=nms_radius, min_samples=1).fit(endpoints[bs].cpu().numpy())
        clusters = db.labels_
        n_clusters = len(set(clusters))
        num_true_junctions.append(n_clusters)

        # Compute the average junction and score for each cluster
        clusters = torch.tensor(clusters, dtype=torch.long, device=device)
        new_junc = torch.zeros(n_clusters, 2, dtype=torch.float, device=device)
        new_junc.scatter_reduce_(
            0,
            clusters[:, None].repeat(1, 2),
            endpoints[bs],
            reduce="mean",
            include_self=False,
        )
        junctions.append(new_junc)
        new_scores = torch.zeros(n_clusters, dtype=torch.float, device=device)
        new_scores.scatter_reduce_(
            0,
            clusters,
            torch.repeat_interleave(line_scores[bs], 2),
            reduce="mean",
            include_self=False,
        )
        junc_scores.append(new_scores)

        # Compute the new lines
        new_lines.append(junctions[-1][clusters].reshape(-1, 2, 2))
        lines_junc_idx.append(clusters.reshape(-1, 2))

        if force_num_lines:
            # Add random junctions (with no connectivity)
            missing = max_num_lines * 2 - len(junctions[-1])
            junctions[-1] = torch.cat(
                [
                    junctions[-1],
                    torch.rand(missing, 2).to(lines)
                    * lines.new_tensor([[w - 1, h - 1]]),
                ],
                dim=0,
            )
            junc_scores[-1] = torch.cat(
                [junc_scores[-1], torch.zeros(missing).to(lines)], dim=0
            )

            junc_connect = torch.eye(max_num_lines * 2, dtype=torch.bool, device=device)
            pairs = clusters.reshape(-1, 2)  # these pairs are connected by a line
            junc_connect[pairs[:, 0], pairs[:, 1]] = True
            junc_connect[pairs[:, 1], pairs[:, 0]] = True
            connectivity.append(junc_connect)
        else:
            # Compute the junction connectivity
            junc_connect = torch.eye(n_clusters, dtype=torch.bool, device=device)
            pairs = clusters.reshape(-1, 2)  # these pairs are connected by a line
            junc_connect[pairs[:, 0], pairs[:, 1]] = True
            junc_connect[pairs[:, 1], pairs[:, 0]] = True
            connectivity.append(junc_connect)

    junctions = torch.stack(junctions, dim=0)
    new_lines = torch.stack(new_lines, dim=0)
    lines_junc_idx = torch.stack(lines_junc_idx, dim=0)

    # Interpolate the new junction descriptors
    junc_descs = sample_descriptors_corner_conv(junctions, all_descs, s).mT

    return (
        junctions,
        junc_scores,
        junc_descs,
        connectivity,
        new_lines,
        lines_junc_idx,
        num_true_junctions,
    )


class WireframeExtractor(BaseModel):
    default_conf = {
        "point_extractor": {
            "name": None,
            "trainable": False,
            "dense_outputs": True,
            "max_num_keypoints": None,
            "force_num_keypoints": False,
        },
        "line_extractor": {
            "name": None,
            "trainable": False,
            "max_num_lines": None,
            "force_num_lines": False,
            "min_length": 15,
        },
        "wireframe_params": {
            "merge_points": True,
            "merge_line_endpoints": True,
            "nms_radius": 3,
        },
    }
    required_data_keys = ["image"]

    def _init(self, conf):
        self.point_extractor = get_model(self.conf.point_extractor.name)(
            self.conf.point_extractor
        )
        self.line_extractor = get_model(self.conf.line_extractor.name)(
            self.conf.line_extractor
        )

    def _forward(self, data):
        b_size, _, h, w = data["image"].shape
        device = data["image"].device

        if (
            not self.conf.point_extractor.force_num_keypoints
            or not self.conf.line_extractor.force_num_lines
        ):
            assert b_size == 1, "Only batch size of 1 accepted for non padded inputs"

        # Line detection
        pred = self.line_extractor(data)
        if pred["line_scores"].shape[-1] != 0:
            pred["line_scores"] /= pred["line_scores"].max(dim=1)[0][:, None] + 1e-8

        # Keypoint prediction
        pred = {**pred, **self.point_extractor(data)}
        assert (
            "dense_descriptors" in pred
        ), "The KP extractor should return dense descriptors"
        s_desc = data["image"].shape[2] // pred["dense_descriptors"].shape[2]

        # Remove keypoints that are too close to line endpoints
        if self.conf.wireframe_params.merge_points:
            line_endpts = pred["lines"].reshape(b_size, -1, 2)
            dist_pt_lines = torch.norm(
                pred["keypoints"][:, :, None] - line_endpts[:, None], dim=-1
            )
            # For each keypoint, mark it as valid or to remove
            pts_to_remove = torch.any(
                dist_pt_lines < self.conf.wireframe_params.nms_radius, dim=2
            )
            if self.conf.point_extractor.force_num_keypoints:
                # Replace the points with random ones
                num_to_remove = pts_to_remove.int().sum().item()
                pred["keypoints"][pts_to_remove] = torch.rand(
                    num_to_remove, 2, device=device
                ) * pred["keypoints"].new_tensor([[w - 1, h - 1]])
                pred["keypoint_scores"][pts_to_remove] = 0
                for bs in range(b_size):
                    descrs = sample_descriptors_corner_conv(
                        pred["keypoints"][bs][pts_to_remove[bs]][None],
                        pred["dense_descriptors"][bs][None],
                        s_desc,
                    )
                    pred["descriptors"][bs][pts_to_remove[bs]] = descrs[0].T
            else:
                # Simply remove them (we assume batch_size = 1 here)
                assert len(pred["keypoints"]) == 1
                pred["keypoints"] = pred["keypoints"][0][~pts_to_remove[0]][None]
                pred["keypoint_scores"] = pred["keypoint_scores"][0][~pts_to_remove[0]][
                    None
                ]
                pred["descriptors"] = pred["descriptors"][0][~pts_to_remove[0]][None]

        # Connect the lines together to form a wireframe
        orig_lines = pred["lines"].clone()
        if (
            self.conf.wireframe_params.merge_line_endpoints
            and len(pred["lines"][0]) > 0
        ):
            # Merge first close-by endpoints to connect lines
            (
                line_points,
                line_pts_scores,
                line_descs,
                line_association,
                pred["lines"],
                lines_junc_idx,
                n_true_junctions,
            ) = lines_to_wireframe(
                pred["lines"],
                pred["line_scores"],
                pred["dense_descriptors"],
                s=s_desc,
                nms_radius=self.conf.wireframe_params.nms_radius,
                force_num_lines=self.conf.line_extractor.force_num_lines,
                max_num_lines=self.conf.line_extractor.max_num_lines,
            )

            # Add the keypoints to the junctions and fill the rest with random keypoints
            (all_points, all_scores, all_descs, pl_associativity) = [], [], [], []
            for bs in range(b_size):
                all_points.append(
                    torch.cat([line_points[bs], pred["keypoints"][bs]], dim=0)
                )
                all_scores.append(
                    torch.cat([line_pts_scores[bs], pred["keypoint_scores"][bs]], dim=0)
                )
                all_descs.append(
                    torch.cat([line_descs[bs], pred["descriptors"][bs]], dim=0)
                )

                associativity = torch.eye(
                    len(all_points[-1]), dtype=torch.bool, device=device
                )
                associativity[
                    : n_true_junctions[bs], : n_true_junctions[bs]
                ] = line_association[bs][: n_true_junctions[bs], : n_true_junctions[bs]]
                pl_associativity.append(associativity)

            all_points = torch.stack(all_points, dim=0)
            all_scores = torch.stack(all_scores, dim=0)
            all_descs = torch.stack(all_descs, dim=0)
            pl_associativity = torch.stack(pl_associativity, dim=0)
        else:
            # Lines are independent
            all_points = torch.cat(
                [pred["lines"].reshape(b_size, -1, 2), pred["keypoints"]], dim=1
            )
            n_pts = all_points.shape[1]
            num_lines = pred["lines"].shape[1]
            n_true_junctions = [num_lines * 2] * b_size
            all_scores = torch.cat(
                [
                    torch.repeat_interleave(pred["line_scores"], 2, dim=1),
                    pred["keypoint_scores"],
                ],
                dim=1,
            )
            line_descs = sample_descriptors_corner_conv(
                pred["lines"].reshape(b_size, -1, 2), pred["dense_descriptors"], s_desc
            ).mT  # [B, n_lines * 2, desc_dim]
            all_descs = torch.cat([line_descs, pred["descriptors"]], dim=1)
            pl_associativity = torch.eye(n_pts, dtype=torch.bool, device=device)[
                None
            ].repeat(b_size, 1, 1)
            lines_junc_idx = (
                torch.arange(num_lines * 2, device=device)
                .reshape(1, -1, 2)
                .repeat(b_size, 1, 1)
            )

        del pred["dense_descriptors"]  # Remove dense descriptors to save memory
        torch.cuda.empty_cache()

        pred["keypoints"] = all_points
        pred["keypoint_scores"] = all_scores
        pred["descriptors"] = all_descs
        pred["pl_associativity"] = pl_associativity
        pred["num_junctions"] = torch.tensor(n_true_junctions)
        pred["orig_lines"] = orig_lines
        pred["lines_junc_idx"] = lines_junc_idx
        return pred

    def loss(self, pred, data):
        raise NotImplementedError

    def metrics(self, _pred, _data):
        return {}