File size: 5,663 Bytes
4dfb78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import argparse
import logging
from pathlib import Path

import torch
from omegaconf import OmegaConf

from ..datasets import get_dataset
from ..geometry.depth import sample_depth
from ..models import get_model
from ..settings import DATA_PATH
from ..utils.export_predictions import export_predictions

resize = 1024
n_kpts = 2048
configs = {
    "sp": {
        "name": f"r{resize}_SP-k{n_kpts}-nms3",
        "keys": ["keypoints", "descriptors", "keypoint_scores"],
        "gray": True,
        "conf": {
            "name": "gluefactory_nonfree.superpoint",
            "nms_radius": 3,
            "max_num_keypoints": n_kpts,
            "detection_threshold": 0.000,
        },
    },
    "sp_open": {
        "name": f"r{resize}_SP-open-k{n_kpts}-nms3",
        "keys": ["keypoints", "descriptors", "keypoint_scores"],
        "gray": True,
        "conf": {
            "name": "extractors.superpoint_open",
            "nms_radius": 3,
            "max_num_keypoints": n_kpts,
            "detection_threshold": 0.000,
        },
    },
    "cv2-sift": {
        "name": f"r{resize}_opencv-SIFT-k{n_kpts}",
        "keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
        "gray": True,
        "conf": {
            "name": "extractors.sift",
            "max_num_keypoints": 4096,
            "backend": "opencv",
        },
    },
    "pycolmap-sift": {
        "name": f"r{resize}_pycolmap-SIFT-k{n_kpts}",
        "keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
        "gray": True,
        "conf": {
            "name": "extractors.sift",
            "max_num_keypoints": n_kpts,
            "backend": "pycolmap",
        },
    },
    "pycolmap-sift-gpu": {
        "name": f"r{resize}_pycolmap_SIFTGPU-nms3-fixed-k{n_kpts}",
        "keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
        "gray": True,
        "conf": {
            "name": "extractors.sift",
            "max_num_keypoints": n_kpts,
            "backend": "pycolmap_cuda",
            "nms_radius": 3,
        },
    },
    "keynet-affnet-hardnet": {
        "name": f"r{resize}_KeyNetAffNetHardNet-k{n_kpts}",
        "keys": ["keypoints", "descriptors", "keypoint_scores", "oris", "scales"],
        "gray": True,
        "conf": {
            "name": "extractors.keynet_affnet_hardnet",
            "max_num_keypoints": n_kpts,
        },
    },
    "disk": {
        "name": f"r{resize}_DISK-k{n_kpts}-nms5",
        "keys": ["keypoints", "descriptors", "keypoint_scores"],
        "gray": False,
        "conf": {
            "name": "extractors.disk_kornia",
            "max_num_keypoints": n_kpts,
        },
    },
    "aliked": {
        "name": f"r{resize}_ALIKED-k{n_kpts}-n16",
        "keys": ["keypoints", "descriptors", "keypoint_scores"],
        "gray": False,
        "conf": {
            "name": "extractors.aliked",
            "max_num_keypoints": n_kpts,
        },
    },
}


def get_kp_depth(pred, data):
    d, valid = sample_depth(pred["keypoints"], data["depth"])
    return {"depth_keypoints": d, "valid_depth_keypoints": valid}


def run_export(feature_file, scene, args):
    conf = {
        "data": {
            "name": "megadepth",
            "views": 1,
            "grayscale": configs[args.method]["gray"],
            "preprocessing": {
                "resize": resize,
                "side": "long",
            },
            "batch_size": 1,
            "num_workers": args.num_workers,
            "read_depth": True,
            "train_split": [scene],
            "train_num_per_scene": None,
        },
        "split": "train",
        "model": configs[args.method]["conf"],
    }

    conf = OmegaConf.create(conf)

    keys = configs[args.method]["keys"]
    dataset = get_dataset(conf.data.name)(conf.data)
    loader = dataset.get_data_loader(conf.split or "test")

    device = "cuda" if torch.cuda.is_available() else "cpu"
    model = get_model(conf.model.name)(conf.model).eval().to(device)

    if args.export_sparse_depth:
        callback_fn = get_kp_depth  # use this to store the depth of each keypoint
        keys = keys + ["depth_keypoints", "valid_depth_keypoints"]
    else:
        callback_fn = None
    export_predictions(
        loader, model, feature_file, as_half=True, keys=keys, callback_fn=callback_fn
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--export_prefix", type=str, default="")
    parser.add_argument("--method", type=str, default="sp")
    parser.add_argument("--scenes", type=str, default=None)
    parser.add_argument("--num_workers", type=int, default=0)
    parser.add_argument("--export_sparse_depth", action="store_true")
    args = parser.parse_args()

    export_name = configs[args.method]["name"]

    data_root = Path(DATA_PATH, "megadepth/Undistorted_SfM")
    export_root = Path(DATA_PATH, "exports", "megadepth-undist-depth-" + export_name)
    export_root.mkdir(parents=True, exist_ok=True)

    if args.scenes is None:
        scenes = [p.name for p in data_root.iterdir() if p.is_dir()]
    else:
        with open(DATA_PATH / "megadepth" / args.scenes, "r") as f:
            scenes = f.read().split()
    for i, scene in enumerate(scenes):
        print(f"{i} / {len(scenes)}", scene)
        feature_file = export_root / (scene + ".h5")
        if feature_file.exists() and False:
            continue
        if not (data_root / scene / "images").exists():
            logging.info("Skip " + scene)
            continue
        logging.info(f"Export local features for scene {scene}")
        run_export(feature_file, scene, args)