Spaces:
Running
Running
File size: 14,156 Bytes
4dfb78b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
"""
2D visualization primitives based on Matplotlib.
1) Plot images with `plot_images`.
2) Call `plot_keypoints` or `plot_matches` any number of times.
3) Optionally: save a .png or .pdf plot (nice in papers!) with `save_plot`.
"""
import matplotlib
import matplotlib.patheffects as path_effects
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
def cm_ranking(sc, ths=[512, 1024, 2048, 4096]):
ls = sc.shape[0]
colors = ["red", "yellow", "lime", "cyan", "blue"]
out = ["gray"] * ls
for i in range(ls):
for c, th in zip(colors[: len(ths) + 1], ths + [ls]):
if i < th:
out[i] = c
break
sid = np.argsort(sc, axis=0).flip(0)
out = np.array(out)[sid]
return out
def cm_RdBl(x):
"""Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
x = np.clip(x, 0, 1)[..., None] * 2
c = x * np.array([[0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0]])
return np.clip(c, 0, 1)
def cm_RdGn(x):
"""Custom colormap: red (0) -> yellow (0.5) -> green (1)."""
x = np.clip(x, 0, 1)[..., None] * 2
c = x * np.array([[0, 1.0, 0]]) + (2 - x) * np.array([[1.0, 0, 0]])
return np.clip(c, 0, 1)
def cm_BlRdGn(x_):
"""Custom colormap: blue (-1) -> red (0.0) -> green (1)."""
x = np.clip(x_, 0, 1)[..., None] * 2
c = x * np.array([[0, 1.0, 0, 1.0]]) + (2 - x) * np.array([[1.0, 0, 0, 1.0]])
xn = -np.clip(x_, -1, 0)[..., None] * 2
cn = xn * np.array([[0, 1.0, 0, 1.0]]) + (2 - xn) * np.array([[1.0, 0, 0, 1.0]])
out = np.clip(np.where(x_[..., None] < 0, cn, c), 0, 1)
return out
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True):
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
adaptive: whether the figure size should fit the image aspect ratios.
"""
n = len(imgs)
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
if adaptive:
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H
else:
ratios = [4 / 3] * n
figsize = [sum(ratios) * 4.5, 4.5]
fig, axs = plt.subplots(
1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
)
if n == 1:
axs = [axs]
for i, (img, ax) in enumerate(zip(imgs, axs)):
ax.imshow(img, cmap=plt.get_cmap(cmaps[i]))
ax.set_axis_off()
if titles:
ax.set_title(titles[i])
fig.tight_layout(pad=pad)
def plot_image_grid(
imgs,
titles=None,
cmaps="gray",
dpi=100,
pad=0.5,
fig=None,
adaptive=True,
figs=2.0,
return_fig=False,
set_lim=False,
):
"""Plot a grid of images.
Args:
imgs: a list of lists of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images.
adaptive: whether the figure size should fit the image aspect ratios.
"""
nr, n = len(imgs), len(imgs[0])
if not isinstance(cmaps, (list, tuple)):
cmaps = [cmaps] * n
if adaptive:
ratios = [i.shape[1] / i.shape[0] for i in imgs[0]] # W / H
else:
ratios = [4 / 3] * n
figsize = [sum(ratios) * figs, nr * figs]
if fig is None:
fig, axs = plt.subplots(
nr, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios}
)
else:
axs = fig.subplots(nr, n, gridspec_kw={"width_ratios": ratios})
fig.figure.set_size_inches(figsize)
if nr == 1:
axs = [axs]
for j in range(nr):
for i in range(n):
ax = axs[j][i]
ax.imshow(imgs[j][i], cmap=plt.get_cmap(cmaps[i]))
ax.set_axis_off()
if set_lim:
ax.set_xlim([0, imgs[j][i].shape[1]])
ax.set_ylim([imgs[j][i].shape[0], 0])
if titles:
ax.set_title(titles[j][i])
if isinstance(fig, plt.Figure):
fig.tight_layout(pad=pad)
if return_fig:
return fig, axs
else:
return axs
def plot_keypoints(kpts, colors="lime", ps=4, axes=None, a=1.0):
"""Plot keypoints for existing images.
Args:
kpts: list of ndarrays of size (N, 2).
colors: string, or list of list of tuples (one for each keypoints).
ps: size of the keypoints as float.
"""
if not isinstance(colors, list):
colors = [colors] * len(kpts)
if not isinstance(a, list):
a = [a] * len(kpts)
if axes is None:
axes = plt.gcf().axes
for ax, k, c, alpha in zip(axes, kpts, colors, a):
ax.scatter(k[:, 0], k[:, 1], c=c, s=ps, linewidths=0, alpha=alpha)
def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, a=1.0, labels=None, axes=None):
"""Plot matches for a pair of existing images.
Args:
kpts0, kpts1: corresponding keypoints of size (N, 2).
color: color of each match, string or RGB tuple. Random if not given.
lw: width of the lines.
ps: size of the end points (no endpoint if ps=0)
indices: indices of the images to draw the matches on.
a: alpha opacity of the match lines.
"""
fig = plt.gcf()
if axes is None:
ax = fig.axes
ax0, ax1 = ax[0], ax[1]
else:
ax0, ax1 = axes
assert len(kpts0) == len(kpts1)
if color is None:
color = sns.color_palette("husl", n_colors=len(kpts0))
elif len(color) > 0 and not isinstance(color[0], (tuple, list)):
color = [color] * len(kpts0)
if lw > 0:
for i in range(len(kpts0)):
line = matplotlib.patches.ConnectionPatch(
xyA=(kpts0[i, 0], kpts0[i, 1]),
xyB=(kpts1[i, 0], kpts1[i, 1]),
coordsA=ax0.transData,
coordsB=ax1.transData,
axesA=ax0,
axesB=ax1,
zorder=1,
color=color[i],
linewidth=lw,
clip_on=True,
alpha=a,
label=None if labels is None else labels[i],
picker=5.0,
)
line.set_annotation_clip(True)
fig.add_artist(line)
# freeze the axes to prevent the transform to change
ax0.autoscale(enable=False)
ax1.autoscale(enable=False)
if ps > 0:
ax0.scatter(
kpts0[:, 0],
kpts0[:, 1],
c=color,
s=ps,
label=None if labels is None or len(labels) == 0 else labels[0],
)
ax1.scatter(
kpts1[:, 0],
kpts1[:, 1],
c=color,
s=ps,
label=None if labels is None or len(labels) == 0 else labels[1],
)
def add_text(
idx,
text,
pos=(0.01, 0.99),
fs=15,
color="w",
lcolor="k",
lwidth=2,
ha="left",
va="top",
axes=None,
**kwargs,
):
if axes is None:
axes = plt.gcf().axes
ax = axes[idx]
t = ax.text(
*pos,
text,
fontsize=fs,
ha=ha,
va=va,
color=color,
transform=ax.transAxes,
**kwargs,
)
if lcolor is not None:
t.set_path_effects(
[
path_effects.Stroke(linewidth=lwidth, foreground=lcolor),
path_effects.Normal(),
]
)
return t
def draw_epipolar_line(
line, axis, imshape=None, color="b", label=None, alpha=1.0, visible=True
):
if imshape is not None:
h, w = imshape[:2]
else:
_, w = axis.get_xlim()
h, _ = axis.get_ylim()
imshape = (h + 0.5, w + 0.5)
# Intersect line with lines representing image borders.
X1 = np.cross(line, [1, 0, -1])
X1 = X1[:2] / X1[2]
X2 = np.cross(line, [1, 0, -w])
X2 = X2[:2] / X2[2]
X3 = np.cross(line, [0, 1, -1])
X3 = X3[:2] / X3[2]
X4 = np.cross(line, [0, 1, -h])
X4 = X4[:2] / X4[2]
# Find intersections which are not outside the image,
# which will therefore be on the image border.
Xs = [X1, X2, X3, X4]
Ps = []
for p in range(4):
X = Xs[p]
if (0 <= X[0] <= (w + 1e-6)) and (0 <= X[1] <= (h + 1e-6)):
Ps.append(X)
if len(Ps) == 2:
break
# Plot line, if it's visible in the image.
if len(Ps) == 2:
art = axis.plot(
[Ps[0][0], Ps[1][0]],
[Ps[0][1], Ps[1][1]],
color,
linestyle="dashed",
label=label,
alpha=alpha,
visible=visible,
)[0]
return art
else:
return None
def get_line(F, kp):
hom_kp = np.array([list(kp) + [1.0]]).transpose()
return np.dot(F, hom_kp)
def plot_epipolar_lines(
pts0, pts1, F, color="b", axes=None, labels=None, a=1.0, visible=True
):
if axes is None:
axes = plt.gcf().axes
assert len(axes) == 2
for ax, kps in zip(axes, [pts1, pts0]):
_, w = ax.get_xlim()
h, _ = ax.get_ylim()
imshape = (h + 0.5, w + 0.5)
for i in range(kps.shape[0]):
if ax == axes[0]:
line = get_line(F.transpose(0, 1), kps[i])[:, 0]
else:
line = get_line(F, kps[i])[:, 0]
draw_epipolar_line(
line,
ax,
imshape,
color=color,
label=None if labels is None else labels[i],
alpha=a,
visible=visible,
)
def plot_heatmaps(heatmaps, vmin=0.0, vmax=None, cmap="Spectral", a=0.5, axes=None):
if axes is None:
axes = plt.gcf().axes
artists = []
for i in range(len(axes)):
a_ = a if isinstance(a, float) else a[i]
art = axes[i].imshow(
heatmaps[i],
alpha=(heatmaps[i] > vmin).float() * a_,
vmin=vmin,
vmax=vmax,
cmap=cmap,
)
artists.append(art)
return artists
def plot_lines(
lines,
line_colors="orange",
point_colors="cyan",
ps=4,
lw=2,
alpha=1.0,
indices=(0, 1),
):
"""Plot lines and endpoints for existing images.
Args:
lines: list of ndarrays of size (N, 2, 2).
colors: string, or list of list of tuples (one for each keypoints).
ps: size of the keypoints as float pixels.
lw: line width as float pixels.
alpha: transparency of the points and lines.
indices: indices of the images to draw the matches on.
"""
if not isinstance(line_colors, list):
line_colors = [line_colors] * len(lines)
if not isinstance(point_colors, list):
point_colors = [point_colors] * len(lines)
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
# Plot the lines and junctions
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors):
for i in range(len(l)):
line = matplotlib.lines.Line2D(
(l[i, 0, 0], l[i, 1, 0]),
(l[i, 0, 1], l[i, 1, 1]),
zorder=1,
c=lc,
linewidth=lw,
alpha=alpha,
)
a.add_line(line)
pts = l.reshape(-1, 2)
a.scatter(pts[:, 0], pts[:, 1], c=pc, s=ps, linewidths=0, zorder=2, alpha=alpha)
def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)):
"""Plot line matches for existing images with multiple colors.
Args:
lines: list of ndarrays of size (N, 2, 2).
correct_matches: bool array of size (N,) indicating correct matches.
lw: line width as float pixels.
indices: indices of the images to draw the matches on.
"""
n_lines = len(lines[0])
colors = sns.color_palette("husl", n_colors=n_lines)
np.random.shuffle(colors)
alphas = np.ones(n_lines)
# If correct_matches is not None, display wrong matches with a low alpha
if correct_matches is not None:
alphas[~np.array(correct_matches)] = 0.2
fig = plt.gcf()
ax = fig.axes
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
# Plot the lines
for a, img_lines in zip(axes, lines):
for i, line in enumerate(img_lines):
fig.add_artist(
matplotlib.patches.ConnectionPatch(
xyA=tuple(line[0]),
coordsA=a.transData,
xyB=tuple(line[1]),
coordsB=a.transData,
zorder=1,
color=colors[i],
linewidth=lw,
alpha=alphas[i],
)
)
def save_plot(path, **kw):
"""Save the current figure without any white margin."""
plt.savefig(path, bbox_inches="tight", pad_inches=0, **kw)
def plot_cumulative(
errors: dict,
thresholds: list,
colors=None,
title="",
unit="-",
logx=False,
):
thresholds = np.linspace(min(thresholds), max(thresholds), 100)
plt.figure(figsize=[5, 8])
for method in errors:
recall = []
errs = np.array(errors[method])
for th in thresholds:
recall.append(np.mean(errs <= th))
plt.plot(
thresholds,
np.array(recall) * 100,
label=method,
c=colors[method] if colors else None,
linewidth=3,
)
plt.grid()
plt.xlabel(unit, fontsize=25)
if logx:
plt.semilogx()
plt.ylim([0, 100])
plt.yticks(ticks=[0, 20, 40, 60, 80, 100])
plt.ylabel(title + "Recall [%]", rotation=0, fontsize=25)
plt.gca().yaxis.set_label_coords(x=0.45, y=1.02)
plt.tick_params(axis="both", which="major", labelsize=20)
plt.yticks(rotation=0)
plt.legend(
bbox_to_anchor=(0.45, -0.12),
ncol=2,
loc="upper center",
fontsize=20,
handlelength=3,
)
plt.tight_layout()
return plt.gcf()
|