File size: 10,808 Bytes
65bbe08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import argparse
import numpy as np
import imageio
import torch
from tqdm import tqdm
import time
import scipy
import scipy.io
import scipy.misc

from lib.model_test import D2Net
from lib.utils import preprocess_image
from lib.pyramid import process_multiscale

import cv2
import matplotlib.pyplot as plt
import os
from sys import exit, argv
from PIL import Image
from skimage.feature import match_descriptors
from skimage.measure import ransac
from skimage.transform import ProjectiveTransform, AffineTransform
import pydegensac


def extractSingle(image, model, device):

	with torch.no_grad():
		keypoints, scores, descriptors = process_multiscale(
			image.to(device).unsqueeze(0),
			model,
			scales=[1]
		)

	keypoints = keypoints[:, [1, 0, 2]]

	feat = {}
	feat['keypoints'] = keypoints
	feat['scores'] = scores
	feat['descriptors'] = descriptors

	return feat


def siftMatching(img1, img2, HFile1, HFile2, device):
	if HFile1 is not None:
		H1 = np.load(HFile1)
		H2 = np.load(HFile2)

	rgbFile1 = img1
	img1 = Image.open(img1)
	
	if(img1.mode != 'RGB'):
		img1 = img1.convert('RGB')
	img1 = np.array(img1)

	if HFile1 is not None:
		img1 = cv2.warpPerspective(img1, H1, dsize=(400,400))

	#### Visualization ####
	# cv2.imshow("Image", cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
	# cv2.waitKey(0)

	rgbFile2 = img2
	img2 = Image.open(img2)
	
	if(img2.mode != 'RGB'):
		img2 = img2.convert('RGB')
	img2 = np.array(img2)

	if HFile2 is not None:
		img2 = cv2.warpPerspective(img2, H2, dsize=(400,400))

	#### Visualization ####
	# cv2.imshow("Image", cv2.cvtColor(img2, cv2.COLOR_BGR2RGB))
	# cv2.waitKey(0)

	# surf = cv2.xfeatures2d.SURF_create(100) # SURF
	surf = cv2.xfeatures2d.SIFT_create()

	kp1, des1 = surf.detectAndCompute(img1, None)
	kp2, des2 = surf.detectAndCompute(img2, None)

	matches = mnn_matcher(
			torch.from_numpy(des1).float().to(device=device),
			torch.from_numpy(des2).float().to(device=device)
		)

	src_pts = np.float32([ kp1[m[0]].pt for m in matches ]).reshape(-1, 2)
	dst_pts = np.float32([ kp2[m[1]].pt for m in matches ]).reshape(-1, 2)

	if(src_pts.shape[0] < 5 or dst_pts.shape[0] < 5):
		return [], []

	H, inliers = pydegensac.findHomography(src_pts, dst_pts, 8.0, 0.99, 10000)

	n_inliers = np.sum(inliers)

	inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in src_pts[inliers]]
	inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in dst_pts[inliers]]
	placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(n_inliers)]

	#### Visualization ####
	image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None)
	image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
	# cv2.imshow('Matches', image3)
	# cv2.waitKey()

	src_pts = np.float32([ inlier_keypoints_left[m.queryIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
	dst_pts = np.float32([ inlier_keypoints_right[m.trainIdx].pt for m in placeholder_matches ]).reshape(-1, 2)
	
	if HFile1 is None:
		return src_pts, dst_pts, image3, image3
	
	orgSrc, orgDst = orgKeypoints(src_pts, dst_pts, H1, H2)
	matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst)

	return orgSrc, orgDst, matchImg, image3


def orgKeypoints(src_pts, dst_pts, H1, H2):
	ones = np.ones((src_pts.shape[0], 1))

	src_pts = np.hstack((src_pts, ones))
	dst_pts = np.hstack((dst_pts, ones))

	orgSrc = np.linalg.inv(H1) @ src_pts.T
	orgDst = np.linalg.inv(H2) @ dst_pts.T

	orgSrc = orgSrc/orgSrc[2, :]
	orgDst = orgDst/orgDst[2, :]

	orgSrc = np.asarray(orgSrc)[0:2, :]
	orgDst = np.asarray(orgDst)[0:2, :]

	return orgSrc, orgDst


def drawOrg(image1, image2, orgSrc, orgDst):
	img1 = cv2.cvtColor(image1, cv2.COLOR_BGR2RGB)
	img2 = cv2.cvtColor(image2, cv2.COLOR_BGR2RGB)

	for i in range(orgSrc.shape[1]):
		im1 = cv2.circle(img1, (int(orgSrc[0, i]), int(orgSrc[1, i])), 3, (0, 0, 255), 1)
	for i in range(orgDst.shape[1]):
		im2 = cv2.circle(img2, (int(orgDst[0, i]), int(orgDst[1, i])), 3, (0, 0, 255), 1)

	im4 = cv2.hconcat([im1, im2])
	for i in range(orgSrc.shape[1]):
		im4 = cv2.line(im4, (int(orgSrc[0, i]), int(orgSrc[1, i])), (int(orgDst[0, i]) +  im1.shape[1], int(orgDst[1, i])), (0, 255, 0), 1)
	im4 = cv2.cvtColor(im4, cv2.COLOR_BGR2RGB)
	# cv2.imshow("Image", im4)
	# cv2.waitKey(0)

	return im4



def getPerspKeypoints(rgbFile1, rgbFile2, HFile1, HFile2, model, device):
	if HFile1 is None:
		igp1, img1 = read_and_process_image(rgbFile1, H=None)
	else:
		H1 = np.load(HFile1)
		igp1, img1 = read_and_process_image(rgbFile1, H=H1)

	c,h,w = igp1.shape

	if HFile2 is None:
		igp2, img2 = read_and_process_image(rgbFile2, H=None)
	else:
		H2 = np.load(HFile2)
		igp2, img2 = read_and_process_image(rgbFile2, H=H2)

	feat1 = extractSingle(igp1, model, device)
	feat2 = extractSingle(igp2, model, device)

	matches = mnn_matcher(
			torch.from_numpy(feat1['descriptors']).to(device=device),
			torch.from_numpy(feat2['descriptors']).to(device=device),
		)
	pos_a = feat1["keypoints"][matches[:, 0], : 2]
	pos_b = feat2["keypoints"][matches[:, 1], : 2]

	H, inliers = pydegensac.findHomography(pos_a, pos_b, 8.0, 0.99, 10000)
	pos_a = pos_a[inliers]
	pos_b = pos_b[inliers]

	inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_a]
	inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_b]
	placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(len(pos_a))]

	image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None, matchColor=[0, 255, 0])
	image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)

	#### Visualization ####
	# cv2.imshow('Matches', image3)
	# cv2.waitKey()

	if HFile1 is None:
		return pos_a, pos_b, image3, image3

	orgSrc, orgDst = orgKeypoints(pos_a, pos_b, H1, H2)
	matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst) # Reproject matches to perspective View

	return orgSrc, orgDst, matchImg, image3

	

###### Ensemble
def read_and_process_image(img_path, resize=None, H=None, h=None, w=None, preprocessing='caffe'):
	img1 = Image.open(img_path)
	if resize:
		img1 = img1.resize(resize)
	if(img1.mode != 'RGB'):
		img1 = img1.convert('RGB')
	img1 = np.array(img1)
	if H is not None:
		img1 = cv2.warpPerspective(img1, H, dsize=(400, 400))
		# cv2.imshow("Image", cv2.cvtColor(img1, cv2.COLOR_BGR2RGB))
		# cv2.waitKey(0)
	igp1 = torch.from_numpy(preprocess_image(img1, preprocessing=preprocessing).astype(np.float32))
	return igp1, img1

def mnn_matcher_scorer(descriptors_a, descriptors_b, k=np.inf):
	device = descriptors_a.device
	sim = descriptors_a @ descriptors_b.t()
	val1, nn12 = torch.max(sim, dim=1)
	val2, nn21 = torch.max(sim, dim=0)
	ids1 = torch.arange(0, sim.shape[0], device=device)
	mask = (ids1 == nn21[nn12])
	matches = torch.stack([ids1[mask], nn12[mask]]).t()
	remaining_matches_dist = val1[mask]
	return matches, remaining_matches_dist

def mnn_matcher(descriptors_a, descriptors_b):
	device = descriptors_a.device
	sim = descriptors_a @ descriptors_b.t()
	nn12 = torch.max(sim, dim=1)[1]
	nn21 = torch.max(sim, dim=0)[1]
	ids1 = torch.arange(0, sim.shape[0], device=device)
	mask = (ids1 == nn21[nn12])
	matches = torch.stack([ids1[mask], nn12[mask]])
	return matches.t().data.cpu().numpy()


def getPerspKeypointsEnsemble(model1, model2, rgbFile1, rgbFile2, HFile1, HFile2, device):
	if HFile1 is None:
		igp1, img1 = read_and_process_image(rgbFile1, H=None)
	else:
		H1 = np.load(HFile1)
		igp1, img1 = read_and_process_image(rgbFile1, H=H1)

	c,h,w = igp1.shape

	if HFile2 is None:
		igp2, img2 = read_and_process_image(rgbFile2, H=None)
	else:
		H2 = np.load(HFile2)
		igp2, img2 = read_and_process_image(rgbFile2, H=H2)

	with torch.no_grad():
		keypoints_a1, scores_a1, descriptors_a1 = process_multiscale(
			igp1.to(device).unsqueeze(0),
			model1,
			scales=[1]
		)
		keypoints_a1 = keypoints_a1[:, [1, 0, 2]]

		keypoints_a2, scores_a2, descriptors_a2 = process_multiscale(
			igp1.to(device).unsqueeze(0),
			model2,
			scales=[1]
		)
		keypoints_a2 = keypoints_a2[:, [1, 0, 2]]

		keypoints_b1, scores_b1, descriptors_b1 = process_multiscale(
			igp2.to(device).unsqueeze(0),
			model1,
			scales=[1]
		)
		keypoints_b1 = keypoints_b1[:, [1, 0, 2]]

		keypoints_b2, scores_b2, descriptors_b2 = process_multiscale(
			igp2.to(device).unsqueeze(0),
			model2,
			scales=[1]
		)
		keypoints_b2 = keypoints_b2[:, [1, 0, 2]]

	# calculating matches for both models
	matches1, dist_1 = mnn_matcher_scorer(
		torch.from_numpy(descriptors_a1).to(device=device),
		torch.from_numpy(descriptors_b1).to(device=device),
#                 len(matches1)
	)
	matches2, dist_2 = mnn_matcher_scorer(
		torch.from_numpy(descriptors_a2).to(device=device),
		torch.from_numpy(descriptors_b2).to(device=device),
#                 len(matches1)
	)

	full_matches = torch.cat([matches1, matches2])
	full_dist = torch.cat([dist_1, dist_2])
	assert len(full_dist)==(len(dist_1)+len(dist_2)), "something wrong"

	k_final = len(full_dist)//2
	# k_final = len(full_dist)
	# k_final = max(len(dist_1), len(dist_2))
	top_k_mask = torch.topk(full_dist, k=k_final)[1]
	first = []
	second = []

	for valid_id in top_k_mask:
		if valid_id<len(dist_1):
			first.append(valid_id)
		else:
			second.append(valid_id-len(dist_1))
	# final_matches = full_matches[top_k_mask]

	matches1 = matches1[torch.tensor(first, device=device).long()].data.cpu().numpy()
	matches2 = matches2[torch.tensor(second, device=device).long()].data.cpu().numpy()

	pos_a1 = keypoints_a1[matches1[:, 0], : 2]
	pos_b1 = keypoints_b1[matches1[:, 1], : 2]

	pos_a2 = keypoints_a2[matches2[:, 0], : 2]
	pos_b2 = keypoints_b2[matches2[:, 1], : 2]

	pos_a = np.concatenate([pos_a1, pos_a2], 0)
	pos_b = np.concatenate([pos_b1, pos_b2], 0)

	# pos_a, pos_b, inliers = apply_ransac(pos_a, pos_b)
	H, inliers = pydegensac.findHomography(pos_a, pos_b, 8.0, 0.99, 10000)
	pos_a = pos_a[inliers]
	pos_b = pos_b[inliers]

	inlier_keypoints_left = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_a]
	inlier_keypoints_right = [cv2.KeyPoint(point[0], point[1], 1) for point in pos_b]
	placeholder_matches = [cv2.DMatch(idx, idx, 1) for idx in range(len(pos_a))]

	image3 = cv2.drawMatches(img1, inlier_keypoints_left, img2, inlier_keypoints_right, placeholder_matches, None, matchColor=[0, 255, 0])
	image3 = cv2.cvtColor(image3, cv2.COLOR_BGR2RGB)
	# cv2.imshow('Matches', image3)
	# cv2.waitKey()


	orgSrc, orgDst = orgKeypoints(pos_a, pos_b, H1, H2)
	matchImg = drawOrg(cv2.imread(rgbFile1), cv2.imread(rgbFile2), orgSrc, orgDst)

	return orgSrc, orgDst, matchImg, image3


if __name__ == '__main__':
	WEIGHTS = '../models/rord.pth'
	
	srcR = argv[1]
	trgR = argv[2]
	srcH = argv[3]
	trgH = argv[4]

	orgSrc, orgDst = getPerspKeypoints(srcR, trgR, srcH, trgH, WEIGHTS, ('gpu'))