File size: 32,379 Bytes
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).

# --------------------------------------------------------
# Dataset structure for stereo
# --------------------------------------------------------

import sys, os
import os.path as osp
import pickle
import numpy as np
from PIL import Image
import json
import h5py
from glob import glob
import cv2

import torch
from torch.utils import data

from .augmentor import StereoAugmentor



dataset_to_root = {
    'CREStereo': './data/stereoflow//crenet_stereo_trainset/stereo_trainset/crestereo/',
    'SceneFlow': './data/stereoflow//SceneFlow/',
    'ETH3DLowRes': './data/stereoflow/eth3d_lowres/',
    'Booster': './data/stereoflow/booster_gt/',
    'Middlebury2021': './data/stereoflow/middlebury/2021/data/',
    'Middlebury2014': './data/stereoflow/middlebury/2014/',
    'Middlebury2006': './data/stereoflow/middlebury/2006/',
    'Middlebury2005': './data/stereoflow/middlebury/2005/train/',
    'MiddleburyEval3':  './data/stereoflow/middlebury/MiddEval3/',
    'Spring': './data/stereoflow/spring/', 
    'Kitti15': './data/stereoflow/kitti-stereo-2015/',
    'Kitti12': './data/stereoflow/kitti-stereo-2012/',
}
cache_dir = "./data/stereoflow/datasets_stereo_cache/"


in1k_mean = torch.tensor([0.485, 0.456, 0.406]).view(3,1,1)
in1k_std =  torch.tensor([0.229, 0.224, 0.225]).view(3,1,1)
def img_to_tensor(img):
    img = torch.from_numpy(img).permute(2, 0, 1).float() / 255.
    img = (img-in1k_mean)/in1k_std
    return img
def disp_to_tensor(disp):
    return torch.from_numpy(disp)[None,:,:]

class StereoDataset(data.Dataset):
    
    def __init__(self, split, augmentor=False, crop_size=None, totensor=True):
        self.split = split
        if not augmentor: assert crop_size is None 
        if crop_size: assert augmentor
        self.crop_size = crop_size
        self.augmentor_str = augmentor
        self.augmentor = StereoAugmentor(crop_size) if augmentor else None
        self.totensor = totensor
        self.rmul = 1 # keep track of rmul
        self.has_constant_resolution = True # whether the dataset has constant resolution or not (=> don't use batch_size>1 at test time)
        self._prepare_data()
        self._load_or_build_cache()
        
    def prepare_data(self):
        """
        to be defined for each dataset 
        """
        raise NotImplementedError 
        
    def __len__(self):
        return len(self.pairnames)
        
    def __getitem__(self, index):
        pairname = self.pairnames[index]
        
        # get filenames 
        Limgname = self.pairname_to_Limgname(pairname)
        Rimgname = self.pairname_to_Rimgname(pairname)
        Ldispname = self.pairname_to_Ldispname(pairname) if self.pairname_to_Ldispname is not None else None
        
        # load images and disparities
        Limg = _read_img(Limgname)
        Rimg = _read_img(Rimgname)
        disp = self.load_disparity(Ldispname) if Ldispname is not None else None
        
        # sanity check
        if disp is not None: assert np.all(disp>0) or self.name=="Spring", (self.name, pairname, Ldispname)
        
        # apply augmentations
        if self.augmentor is not None:
            Limg, Rimg, disp = self.augmentor(Limg, Rimg, disp, self.name)
        
        if self.totensor:
            Limg = img_to_tensor(Limg)
            Rimg = img_to_tensor(Rimg)
            if disp is None:
                disp = torch.tensor([]) # to allow dataloader batching with default collate_gn
            else:
                disp = disp_to_tensor(disp)
        
        return Limg, Rimg, disp, str(pairname)
        
    def __rmul__(self, v):
        self.rmul *= v
        self.pairnames = v * self.pairnames
        return self
        
    def __str__(self):
        return f'{self.__class__.__name__}_{self.split}'
        
    def __repr__(self):
        s = f'{self.__class__.__name__}(split={self.split}, augmentor={self.augmentor_str}, crop_size={str(self.crop_size)}, totensor={self.totensor})'
        if self.rmul==1:
            s+=f'\n\tnum pairs: {len(self.pairnames)}'
        else:
            s+=f'\n\tnum pairs: {len(self.pairnames)} ({len(self.pairnames)//self.rmul}x{self.rmul})'
        return s

    def _set_root(self):
        self.root = dataset_to_root[self.name]
        assert os.path.isdir(self.root), f"could not find root directory for dataset {self.name}: {self.root}"       

    def _load_or_build_cache(self):
        cache_file = osp.join(cache_dir, self.name+'.pkl')
        if osp.isfile(cache_file):
            with open(cache_file, 'rb') as fid:
                self.pairnames = pickle.load(fid)[self.split]
        else:
            tosave = self._build_cache()
            os.makedirs(cache_dir, exist_ok=True)
            with open(cache_file, 'wb') as fid:
                pickle.dump(tosave, fid)
            self.pairnames = tosave[self.split]
        
class CREStereoDataset(StereoDataset):

    def _prepare_data(self):
        self.name = 'CREStereo'
        self._set_root()
        assert self.split in ['train']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_left.jpg')
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'_right.jpg')
        self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname+'_left.disp.png')
        self.pairname_to_str = lambda pairname: pairname
        self.load_disparity = _read_crestereo_disp
        
    
    def _build_cache(self):
        allpairs = [s+'/'+f[:-len('_left.jpg')] for s in sorted(os.listdir(self.root)) for f in sorted(os.listdir(self.root+'/'+s)) if f.endswith('_left.jpg')]
        assert len(allpairs)==200000, "incorrect parsing of pairs in CreStereo"
        tosave = {'train': allpairs}
        return tosave
        
class SceneFlowDataset(StereoDataset):

    def _prepare_data(self):
        self.name = "SceneFlow"
        self._set_root()
        assert self.split in ['train_finalpass','train_cleanpass','train_allpass','test_finalpass','test_cleanpass','test_allpass','test1of100_cleanpass','test1of100_finalpass']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/left/','/right/')
        self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname).replace('/frames_finalpass/','/disparity/').replace('/frames_cleanpass/','/disparity/')[:-4]+'.pfm'
        self.pairname_to_str = lambda pairname: pairname[:-4]
        self.load_disparity = _read_sceneflow_disp
        
    def _build_cache(self):
        trainpairs = []
        # driving
        pairs = sorted(glob(self.root+'Driving/frames_finalpass/*/*/*/left/*.png'))
        pairs = list(map(lambda x: x[len(self.root):], pairs))
        assert len(pairs) == 4400, "incorrect parsing of pairs in SceneFlow"
        trainpairs += pairs
        # monkaa
        pairs = sorted(glob(self.root+'Monkaa/frames_finalpass/*/left/*.png'))
        pairs = list(map(lambda x: x[len(self.root):], pairs))
        assert len(pairs) == 8664, "incorrect parsing of pairs in SceneFlow"
        trainpairs += pairs
        # flyingthings
        pairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TRAIN/*/*/left/*.png'))
        pairs = list(map(lambda x: x[len(self.root):], pairs))
        assert len(pairs) == 22390, "incorrect parsing of pairs in SceneFlow"
        trainpairs += pairs
        assert len(trainpairs) == 35454, "incorrect parsing of pairs in SceneFlow"
        testpairs = sorted(glob(self.root+'FlyingThings/frames_finalpass/TEST/*/*/left/*.png'))
        testpairs = list(map(lambda x: x[len(self.root):], testpairs))
        assert len(testpairs) == 4370, "incorrect parsing of pairs in SceneFlow"
        test1of100pairs = testpairs[::100]
        assert len(test1of100pairs) == 44, "incorrect parsing of pairs in SceneFlow"
        # all 
        tosave = {'train_finalpass': trainpairs,
                  'train_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), trainpairs)),
                  'test_finalpass': testpairs,
                  'test_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), testpairs)),
                  'test1of100_finalpass': test1of100pairs,
                  'test1of100_cleanpass': list(map(lambda x: x.replace('frames_finalpass','frames_cleanpass'), test1of100pairs)),
                 }
        tosave['train_allpass'] = tosave['train_finalpass']+tosave['train_cleanpass']
        tosave['test_allpass'] = tosave['test_finalpass']+tosave['test_cleanpass']
        return tosave
   
class Md21Dataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Middlebury2021"
        self._set_root()
        assert self.split in ['train','subtrain','subval']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/im0','/im1'))
        self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp0.pfm')
        self.pairname_to_str = lambda pairname: pairname[:-4]
        self.load_disparity = _read_middlebury_disp
        
    def _build_cache(self):
        seqs = sorted(os.listdir(self.root))
        trainpairs = []
        for s in seqs:
            #trainpairs += [s+'/im0.png'] # we should remove it, it is included as such in other lightings
            trainpairs += [s+'/ambient/'+b+'/'+a for b in sorted(os.listdir(osp.join(self.root,s,'ambient'))) for a in sorted(os.listdir(osp.join(self.root,s,'ambient',b))) if a.startswith('im0')]
        assert len(trainpairs)==355
        subtrainpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[:-2])]
        subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in seqs[-2:])]
        assert len(subtrainpairs)==335 and len(subvalpairs)==20, "incorrect parsing of pairs in Middlebury 2021"
        tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
        return tosave 

class Md14Dataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Middlebury2014"
        self._set_root()
        assert self.split in ['train','subtrain','subval']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'im0.png')
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname)
        self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'disp0.pfm')
        self.pairname_to_str = lambda pairname: pairname[:-4]
        self.load_disparity = _read_middlebury_disp
        self.has_constant_resolution = False
        
    def _build_cache(self):
        seqs = sorted(os.listdir(self.root))
        trainpairs = []
        for s in seqs:
            trainpairs += [s+'/im1.png',s+'/im1E.png',s+'/im1L.png']
        assert len(trainpairs)==138
        valseqs = ['Umbrella-imperfect','Vintage-perfect']
        assert all(s in seqs for s in valseqs)
        subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
        subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
        assert len(subtrainpairs)==132 and len(subvalpairs)==6, "incorrect parsing of pairs in Middlebury 2014"
        tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
        return tosave 

class Md06Dataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Middlebury2006"
        self._set_root()
        assert self.split in ['train','subtrain','subval']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png')
        self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png')
        self.load_disparity = _read_middlebury20052006_disp
        self.has_constant_resolution = False
        
    def _build_cache(self):
        seqs = sorted(os.listdir(self.root))
        trainpairs = []
        for s in seqs:
            for i in ['Illum1','Illum2','Illum3']:
                for e in ['Exp0','Exp1','Exp2']:
                    trainpairs.append(osp.join(s,i,e,'view1.png'))
        assert len(trainpairs)==189
        valseqs = ['Rocks1','Wood2']
        assert all(s in seqs for s in valseqs)
        subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
        subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
        assert len(subtrainpairs)==171 and len(subvalpairs)==18, "incorrect parsing of pairs in Middlebury 2006"
        tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
        return tosave

class Md05Dataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Middlebury2005"
        self._set_root()
        assert self.split in ['train','subtrain','subval']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, osp.dirname(pairname), 'view5.png')
        self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, pairname.split('/')[0], 'disp1.png')
        self.pairname_to_str = lambda pairname: pairname[:-4]
        self.load_disparity = _read_middlebury20052006_disp
        
    def _build_cache(self):
        seqs = sorted(os.listdir(self.root))
        trainpairs = []
        for s in seqs:
            for i in ['Illum1','Illum2','Illum3']:
                for e in ['Exp0','Exp1','Exp2']:
                    trainpairs.append(osp.join(s,i,e,'view1.png'))
        assert len(trainpairs)==54, "incorrect parsing of pairs in Middlebury 2005"
        valseqs = ['Reindeer']
        assert all(s in seqs for s in valseqs)
        subtrainpairs = [p for p in trainpairs if not any(p.startswith(s+'/') for s in valseqs)]
        subvalpairs = [p for p in trainpairs if any(p.startswith(s+'/') for s in valseqs)]
        assert len(subtrainpairs)==45 and len(subvalpairs)==9, "incorrect parsing of pairs in Middlebury 2005"
        tosave = {'train': trainpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
        return tosave
        
class MdEval3Dataset(StereoDataset):

    def _prepare_data(self):
        self.name = "MiddleburyEval3"
        self._set_root()
        assert self.split in [s+'_'+r for s in ['train','subtrain','subval','test','all'] for r in ['full','half','quarter']]
        if self.split.endswith('_full'):
            self.root = self.root.replace('/MiddEval3','/MiddEval3_F')
        elif self.split.endswith('_half'):        
            self.root = self.root.replace('/MiddEval3','/MiddEval3_H')
        else:
            assert self.split.endswith('_quarter')
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png')
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png')
        self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname, 'disp0GT.pfm')
        self.pairname_to_str = lambda pairname: pairname
        self.load_disparity = _read_middlebury_disp
        # for submission only
        self.submission_methodname = "CroCo-Stereo"
        self.submission_sresolution = 'F' if self.split.endswith('_full') else ('H' if self.split.endswith('_half') else 'Q')
        
    def _build_cache(self):
        trainpairs = ['train/'+s for s in sorted(os.listdir(self.root+'train/'))]
        testpairs = ['test/'+s for s in sorted(os.listdir(self.root+'test/'))]
        subvalpairs = trainpairs[-1:]
        subtrainpairs = trainpairs[:-1]
        allpairs = trainpairs+testpairs
        assert len(trainpairs)==15 and len(testpairs)==15 and len(subvalpairs)==1 and len(subtrainpairs)==14 and len(allpairs)==30, "incorrect parsing of pairs in Middlebury Eval v3"
        tosave = {}
        for r in ['full','half','quarter']:
            tosave.update(**{'train_'+r: trainpairs, 'subtrain_'+r: subtrainpairs, 'subval_'+r: subvalpairs, 'test_'+r: testpairs, 'all_'+r: allpairs})
        return tosave
        
    def submission_save_pairname(self, pairname, prediction, outdir, time):
        assert prediction.ndim==2
        assert prediction.dtype==np.float32
        outfile = os.path.join(outdir, pairname.split('/')[0].replace('train','training')+self.submission_sresolution, pairname.split('/')[1], 'disp0'+self.submission_methodname+'.pfm')
        os.makedirs( os.path.dirname(outfile), exist_ok=True)
        writePFM(outfile, prediction)
        timefile = os.path.join( os.path.dirname(outfile), "time"+self.submission_methodname+'.txt')
        with open(timefile, 'w') as fid:
            fid.write(str(time))

    def finalize_submission(self, outdir):
        cmd = f'cd {outdir}/; zip -r "{self.submission_methodname}.zip" .'
        print(cmd)
        os.system(cmd)
        print(f'Done. Submission file at {outdir}/{self.submission_methodname}.zip')

class ETH3DLowResDataset(StereoDataset):

    def _prepare_data(self):
        self.name = "ETH3DLowRes"
        self._set_root()
        assert self.split in ['train','test','subtrain','subval','all']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname, 'im0.png')
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname, 'im1.png')
        self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: None if pairname.startswith('test/') else osp.join(self.root, pairname.replace('train/','train_gt/'), 'disp0GT.pfm')
        self.pairname_to_str = lambda pairname: pairname
        self.load_disparity = _read_eth3d_disp
        self.has_constant_resolution = False
        
    def _build_cache(self):
        trainpairs = ['train/' + s for s in sorted(os.listdir(self.root+'train/'))]
        testpairs = ['test/' + s for s in sorted(os.listdir(self.root+'test/'))]
        assert len(trainpairs) == 27 and len(testpairs) == 20, "incorrect parsing of pairs in ETH3D Low Res"
        subvalpairs = ['train/delivery_area_3s','train/electro_3l','train/playground_3l']
        assert all(p in trainpairs for p in subvalpairs)
        subtrainpairs = [p for p in trainpairs if not p in subvalpairs]
        assert len(subvalpairs)==3 and len(subtrainpairs)==24, "incorrect parsing of pairs in ETH3D Low Res"
        tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs, 'all': trainpairs+testpairs}
        return tosave

    def submission_save_pairname(self, pairname, prediction, outdir, time):
        assert prediction.ndim==2
        assert prediction.dtype==np.float32
        outfile = os.path.join(outdir, 'low_res_two_view', pairname.split('/')[1]+'.pfm')
        os.makedirs( os.path.dirname(outfile), exist_ok=True)
        writePFM(outfile, prediction)
        timefile = outfile[:-4]+'.txt'
        with open(timefile, 'w') as fid:
            fid.write('runtime '+str(time))

    def finalize_submission(self, outdir):
        cmd = f'cd {outdir}/; zip -r "eth3d_low_res_two_view_results.zip" low_res_two_view'
        print(cmd)
        os.system(cmd)
        print(f'Done. Submission file at {outdir}/eth3d_low_res_two_view_results.zip')

class BoosterDataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Booster"
        self._set_root()
        assert self.split in ['train_balanced','test_balanced','subtrain_balanced','subval_balanced'] # we use only the balanced version
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname)
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname).replace('/camera_00/','/camera_02/')
        self.pairname_to_Ldispname = lambda pairname: osp.join(self.root, osp.dirname(pairname), '../disp_00.npy') # same images with different colors, same gt per sequence
        self.pairname_to_str = lambda pairname: pairname[:-4].replace('/camera_00/','/')
        self.load_disparity = _read_booster_disp
        
        
    def _build_cache(self):
        trainseqs = sorted(os.listdir(self.root+'train/balanced'))
        trainpairs = ['train/balanced/'+s+'/camera_00/'+imname for s in trainseqs for imname in sorted(os.listdir(self.root+'train/balanced/'+s+'/camera_00/'))]
        testpairs = ['test/balanced/'+s+'/camera_00/'+imname for s in sorted(os.listdir(self.root+'test/balanced')) for imname in sorted(os.listdir(self.root+'test/balanced/'+s+'/camera_00/'))]
        assert len(trainpairs) == 228 and len(testpairs) == 191
        subtrainpairs = [p for p in trainpairs if any(s in p for s in trainseqs[:-2])]
        subvalpairs = [p for p in trainpairs if any(s in p for s in trainseqs[-2:])]
        # warning: if we do validation split, we should split scenes!!!
        tosave = {'train_balanced': trainpairs, 'test_balanced': testpairs, 'subtrain_balanced': subtrainpairs, 'subval_balanced': subvalpairs,}
        return tosave
        
class SpringDataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Spring"
        self._set_root()
        assert self.split in ['train', 'test', 'subtrain', 'subval']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'.png')
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname+'.png').replace('frame_right','<frame_right>').replace('frame_left','frame_right').replace('<frame_right>','frame_left')
        self.pairname_to_Ldispname = lambda pairname: None if pairname.startswith('test') else osp.join(self.root, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right')
        self.pairname_to_str = lambda pairname: pairname
        self.load_disparity = _read_hdf5_disp        
        
    def _build_cache(self):
        trainseqs = sorted(os.listdir( osp.join(self.root,'train')))
        trainpairs = [osp.join('train',s,'frame_left',f[:-4]) for s in trainseqs for f in sorted(os.listdir(osp.join(self.root,'train',s,'frame_left')))]
        testseqs = sorted(os.listdir( osp.join(self.root,'test')))
        testpairs = [osp.join('test',s,'frame_left',f[:-4]) for s in testseqs for f in sorted(os.listdir(osp.join(self.root,'test',s,'frame_left')))]
        testpairs += [p.replace('frame_left','frame_right') for p in testpairs]
        """maxnorm = {'0001': 32.88, '0002': 228.5, '0004': 298.2, '0005': 142.5, '0006': 113.6, '0007': 27.3, '0008': 554.5, '0009': 155.6, '0010': 126.1, '0011': 87.6, '0012': 303.2, '0013': 24.14, '0014': 82.56, '0015': 98.44, '0016': 156.9, '0017': 28.17, '0018': 21.03, '0020': 178.0, '0021': 58.06, '0022': 354.2, '0023': 8.79, '0024': 97.06, '0025': 55.16, '0026': 91.9, '0027': 156.6, '0030': 200.4, '0032': 58.66, '0033': 373.5, '0036': 149.4, '0037': 5.625, '0038': 37.0, '0039': 12.2, '0041': 453.5, '0043': 457.0, '0044': 379.5, '0045': 161.8, '0047': 105.44} # => let'use 0041"""
        subtrainpairs = [p for p in trainpairs if p.split('/')[1]!='0041']
        subvalpairs = [p for p in trainpairs if p.split('/')[1]=='0041']
        assert len(trainpairs)==5000 and len(testpairs)==2000 and len(subtrainpairs)==4904 and len(subvalpairs)==96, "incorrect parsing of pairs in Spring"
        tosave = {'train': trainpairs, 'test': testpairs, 'subtrain': subtrainpairs, 'subval': subvalpairs}
        return tosave
        
    def submission_save_pairname(self, pairname, prediction, outdir, time):
        assert prediction.ndim==2
        assert prediction.dtype==np.float32
        outfile = os.path.join(outdir, pairname+'.dsp5').replace('frame_left','disp1_left').replace('frame_right','disp1_right')
        os.makedirs( os.path.dirname(outfile), exist_ok=True)
        writeDsp5File(prediction, outfile)
        
    def finalize_submission(self, outdir):
        assert self.split=='test'
        exe = "{self.root}/disp1_subsampling"
        if os.path.isfile(exe):
            cmd = f'cd "{outdir}/test"; {exe} .'
            print(cmd)
            os.system(cmd)
        else:
            print('Could not find disp1_subsampling executable for submission.')
            print('Please download it and run:')
            print(f'cd "{outdir}/test"; <disp1_subsampling_exe> .')

class Kitti12Dataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Kitti12"
        self._set_root()
        assert self.split in ['train','test']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png')
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/colored_1/')+'_10.png')
        self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/colored_0/','/disp_occ/')+'_10.png')
        self.pairname_to_str = lambda pairname: pairname.replace('/colored_0/','/')
        self.load_disparity = _read_kitti_disp
        
    def _build_cache(self):
        trainseqs = ["training/colored_0/%06d"%(i) for i in range(194)]
        testseqs = ["testing/colored_0/%06d"%(i) for i in range(195)]
        assert len(trainseqs)==194 and len(testseqs)==195, "incorrect parsing of pairs in Kitti12"
        tosave = {'train': trainseqs, 'test': testseqs}
        return tosave 

    def submission_save_pairname(self, pairname, prediction, outdir, time):
        assert prediction.ndim==2
        assert prediction.dtype==np.float32
        outfile = os.path.join(outdir, pairname.split('/')[-1]+'_10.png')
        os.makedirs( os.path.dirname(outfile), exist_ok=True)
        img = (prediction * 256).astype('uint16')
        Image.fromarray(img).save(outfile)

    def finalize_submission(self, outdir):
        assert self.split=='test'
        cmd = f'cd {outdir}/; zip -r "kitti12_results.zip" .'
        print(cmd)
        os.system(cmd)
        print(f'Done. Submission file at {outdir}/kitti12_results.zip')

class Kitti15Dataset(StereoDataset):

    def _prepare_data(self):
        self.name = "Kitti15"
        self._set_root()
        assert self.split in ['train','subtrain','subval','test']
        self.pairname_to_Limgname = lambda pairname: osp.join(self.root, pairname+'_10.png')
        self.pairname_to_Rimgname = lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/image_3/')+'_10.png')
        self.pairname_to_Ldispname = None if self.split=='test' else lambda pairname: osp.join(self.root, pairname.replace('/image_2/','/disp_occ_0/')+'_10.png')
        self.pairname_to_str = lambda pairname: pairname.replace('/image_2/','/')
        self.load_disparity = _read_kitti_disp
        
    def _build_cache(self):
        trainseqs = ["training/image_2/%06d"%(i) for i in range(200)]
        subtrainseqs = trainseqs[:-5]
        subvalseqs = trainseqs[-5:]
        testseqs = ["testing/image_2/%06d"%(i) for i in range(200)]
        assert len(trainseqs)==200 and len(subtrainseqs)==195 and len(subvalseqs)==5 and len(testseqs)==200, "incorrect parsing of pairs in Kitti15"
        tosave = {'train': trainseqs, 'subtrain': subtrainseqs, 'subval': subvalseqs, 'test': testseqs}
        return tosave 

    def submission_save_pairname(self, pairname, prediction, outdir, time):
        assert prediction.ndim==2
        assert prediction.dtype==np.float32
        outfile = os.path.join(outdir, 'disp_0', pairname.split('/')[-1]+'_10.png')
        os.makedirs( os.path.dirname(outfile), exist_ok=True)
        img = (prediction * 256).astype('uint16')
        Image.fromarray(img).save(outfile)

    def finalize_submission(self, outdir):
        assert self.split=='test'
        cmd = f'cd {outdir}/; zip -r "kitti15_results.zip" disp_0'
        print(cmd)
        os.system(cmd)
        print(f'Done. Submission file at {outdir}/kitti15_results.zip')


### auxiliary functions

def _read_img(filename):
    # convert to RGB for scene flow finalpass data
    img = np.asarray(Image.open(filename).convert('RGB'))
    return img

def _read_booster_disp(filename):
    disp = np.load(filename)
    disp[disp==0.0] = np.inf
    return disp

def _read_png_disp(filename, coef=1.0):
    disp = np.asarray(Image.open(filename))
    disp = disp.astype(np.float32) / coef
    disp[disp==0.0] = np.inf
    return disp 

def _read_pfm_disp(filename):
    disp = np.ascontiguousarray(_read_pfm(filename)[0])
    disp[disp<=0] = np.inf # eg /nfs/data/ffs-3d/datasets/middlebury/2014/Shopvac-imperfect/disp0.pfm
    return disp

def _read_npy_disp(filename):
    return np.load(filename)

def _read_crestereo_disp(filename): return _read_png_disp(filename, coef=32.0)
def _read_middlebury20052006_disp(filename): return _read_png_disp(filename, coef=1.0)
def _read_kitti_disp(filename): return _read_png_disp(filename, coef=256.0)
_read_sceneflow_disp = _read_pfm_disp
_read_eth3d_disp = _read_pfm_disp
_read_middlebury_disp = _read_pfm_disp
_read_carla_disp = _read_pfm_disp
_read_tartanair_disp = _read_npy_disp
    
def _read_hdf5_disp(filename):
    disp = np.asarray(h5py.File(filename)['disparity'])
    disp[np.isnan(disp)] = np.inf # make invalid values as +inf
    #disp[disp==0.0] = np.inf # make invalid values as +inf
    return disp.astype(np.float32)
    
import re
def _read_pfm(file):
    file = open(file, 'rb')

    color = None
    width = None
    height = None
    scale = None
    endian = None

    header = file.readline().rstrip()
    if header.decode("ascii") == 'PF':
        color = True
    elif header.decode("ascii") == 'Pf':
        color = False
    else:
        raise Exception('Not a PFM file.')

    dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
    if dim_match:
        width, height = list(map(int, dim_match.groups()))
    else:
        raise Exception('Malformed PFM header.')

    scale = float(file.readline().decode("ascii").rstrip())
    if scale < 0:  # little-endian
        endian = '<'
        scale = -scale
    else:
        endian = '>'  # big-endian

    data = np.fromfile(file, endian + 'f')
    shape = (height, width, 3) if color else (height, width)

    data = np.reshape(data, shape)
    data = np.flipud(data)
    return data, scale

def writePFM(file, image, scale=1):
    file = open(file, 'wb')

    color = None

    if image.dtype.name != 'float32':
        raise Exception('Image dtype must be float32.')

    image = np.flipud(image)

    if len(image.shape) == 3 and image.shape[2] == 3:  # color image
        color = True
    elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1:  # greyscale
        color = False
    else:
        raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')

    file.write('PF\n' if color else 'Pf\n'.encode())
    file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))

    endian = image.dtype.byteorder

    if endian == '<' or endian == '=' and sys.byteorder == 'little':
        scale = -scale

    file.write('%f\n'.encode() % scale)

    image.tofile(file)

def writeDsp5File(disp, filename):
    with h5py.File(filename, "w") as f:
        f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)


# disp visualization

def vis_disparity(disp, m=None, M=None):
    if m is None: m = disp.min()
    if M is None: M = disp.max()
    disp_vis = (disp - m) / (M-m) * 255.0
    disp_vis = disp_vis.astype("uint8")
    disp_vis = cv2.applyColorMap(disp_vis, cv2.COLORMAP_INFERNO)
    return disp_vis

# dataset getter 
    
def get_train_dataset_stereo(dataset_str, augmentor=True, crop_size=None):
    dataset_str = dataset_str.replace('(','Dataset(')
    if augmentor:
        dataset_str = dataset_str.replace(')',', augmentor=True)')
    if crop_size is not None:
        dataset_str = dataset_str.replace(')',', crop_size={:s})'.format(str(crop_size)))
    return eval(dataset_str)
    
def get_test_datasets_stereo(dataset_str):
    dataset_str = dataset_str.replace('(','Dataset(')
    return [eval(s) for s in dataset_str.split('+')]