Spaces:
Running
Running
File size: 18,066 Bytes
b178479 9223079 b178479 9223079 b178479 9223079 ba00238 b178479 9223079 6932f26 9223079 b178479 63932be b178479 6932f26 b178479 ba00238 b178479 6932f26 b178479 6932f26 ba00238 6932f26 ba00238 b178479 6932f26 b178479 6932f26 b178479 a49828e b178479 a49828e 63932be a49828e b178479 59a538c b178479 ba00238 9223079 ba00238 9223079 b178479 9223079 b178479 6932f26 b178479 ba00238 b178479 ba00238 a49828e ba00238 b178479 ba00238 b178479 ba00238 b178479 ba00238 b178479 ba00238 b178479 9223079 63932be 704901c 9223079 00f0bd9 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import os
import random
import numpy as np
import torch
from itertools import combinations
import cv2
import gradio as gr
from hloc import matchers, extractors
from hloc.utils.base_model import dynamic_load
from hloc import match_dense, match_features, extract_features
from hloc.utils.viz import add_text, plot_keypoints
from .viz import draw_matches, fig2im, plot_images, plot_color_line_matches
device = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_SETTING_THRESHOLD = 0.1
DEFAULT_SETTING_MAX_FEATURES = 2000
DEFAULT_DEFAULT_KEYPOINT_THRESHOLD = 0.01
DEFAULT_ENABLE_RANSAC = True
DEFAULT_RANSAC_METHOD = "USAC_MAGSAC"
DEFAULT_RANSAC_REPROJ_THRESHOLD = 8
DEFAULT_RANSAC_CONFIDENCE = 0.999
DEFAULT_RANSAC_MAX_ITER = 10000
DEFAULT_MIN_NUM_MATCHES = 4
DEFAULT_MATCHING_THRESHOLD = 0.2
DEFAULT_SETTING_GEOMETRY = "Homography"
def get_model(match_conf):
Model = dynamic_load(matchers, match_conf["model"]["name"])
model = Model(match_conf["model"]).eval().to(device)
return model
def get_feature_model(conf):
Model = dynamic_load(extractors, conf["model"]["name"])
model = Model(conf["model"]).eval().to(device)
return model
def gen_examples():
random.seed(1)
example_matchers = [
"disk+lightglue",
"loftr",
"disk",
"d2net",
"topicfm",
"superpoint+superglue",
"disk+dualsoftmax",
"lanet",
]
def gen_images_pairs(path: str, count: int = 5):
imgs_list = [
os.path.join(path, file)
for file in os.listdir(path)
if file.lower().endswith((".jpg", ".jpeg", ".png"))
]
pairs = list(combinations(imgs_list, 2))
selected = random.sample(range(len(pairs)), count)
return [pairs[i] for i in selected]
# image pair path
path = "datasets/sacre_coeur/mapping"
pairs = gen_images_pairs(path, len(example_matchers))
match_setting_threshold = DEFAULT_SETTING_THRESHOLD
match_setting_max_features = DEFAULT_SETTING_MAX_FEATURES
detect_keypoints_threshold = DEFAULT_DEFAULT_KEYPOINT_THRESHOLD
ransac_method = DEFAULT_RANSAC_METHOD
ransac_reproj_threshold = DEFAULT_RANSAC_REPROJ_THRESHOLD
ransac_confidence = DEFAULT_RANSAC_CONFIDENCE
ransac_max_iter = DEFAULT_RANSAC_MAX_ITER
input_lists = []
for pair, mt in zip(pairs, example_matchers):
input_lists.append(
[
pair[0],
pair[1],
match_setting_threshold,
match_setting_max_features,
detect_keypoints_threshold,
mt,
# enable_ransac,
ransac_method,
ransac_reproj_threshold,
ransac_confidence,
ransac_max_iter,
]
)
return input_lists
def filter_matches(
pred,
ransac_method=DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
):
mkpts0 = None
mkpts1 = None
feature_type = None
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
mkpts0 = pred["keypoints0_orig"]
mkpts1 = pred["keypoints1_orig"]
feature_type = "KEYPOINT"
elif (
"line_keypoints0_orig" in pred.keys()
and "line_keypoints1_orig" in pred.keys()
):
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
feature_type = "LINE"
else:
return pred
if mkpts0 is None or mkpts0 is None:
return pred
if ransac_method not in ransac_zoo.keys():
ransac_method = DEFAULT_RANSAC_METHOD
if len(mkpts0) < DEFAULT_MIN_NUM_MATCHES:
return pred
H, mask = cv2.findHomography(
mkpts0,
mkpts1,
method=ransac_zoo[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
mask = np.array(mask.ravel().astype("bool"), dtype="bool")
if H is not None:
if feature_type == "KEYPOINT":
pred["keypoints0_orig"] = mkpts0[mask]
pred["keypoints1_orig"] = mkpts1[mask]
pred["mconf"] = pred["mconf"][mask]
elif feature_type == "LINE":
pred["line_keypoints0_orig"] = mkpts0[mask]
pred["line_keypoints1_orig"] = mkpts1[mask]
return pred
def compute_geom(
pred,
ransac_method=DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
) -> dict:
mkpts0 = None
mkpts1 = None
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
mkpts0 = pred["keypoints0_orig"]
mkpts1 = pred["keypoints1_orig"]
if (
"line_keypoints0_orig" in pred.keys()
and "line_keypoints1_orig" in pred.keys()
):
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
if mkpts0 is not None and mkpts1 is not None:
if len(mkpts0) < 2 * DEFAULT_MIN_NUM_MATCHES:
return {}
h1, w1, _ = pred["image0_orig"].shape
geo_info = {}
F, inliers = cv2.findFundamentalMat(
mkpts0,
mkpts1,
method=ransac_zoo[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
if F is not None:
geo_info["Fundamental"] = F.tolist()
H, _ = cv2.findHomography(
mkpts1,
mkpts0,
method=ransac_zoo[ransac_method],
ransacReprojThreshold=ransac_reproj_threshold,
confidence=ransac_confidence,
maxIters=ransac_max_iter,
)
if H is not None:
geo_info["Homography"] = H.tolist()
_, H1, H2 = cv2.stereoRectifyUncalibrated(
mkpts0.reshape(-1, 2),
mkpts1.reshape(-1, 2),
F,
imgSize=(w1, h1),
)
geo_info["H1"] = H1.tolist()
geo_info["H2"] = H2.tolist()
return geo_info
else:
return {}
def wrap_images(img0, img1, geo_info, geom_type):
h1, w1, _ = img0.shape
h2, w2, _ = img1.shape
result_matrix = None
if geo_info is not None and len(geo_info) != 0:
rectified_image0 = img0
rectified_image1 = None
H = np.array(geo_info["Homography"])
F = np.array(geo_info["Fundamental"])
title = []
if geom_type == "Homography":
rectified_image1 = cv2.warpPerspective(
img1, H, (img0.shape[1], img0.shape[0])
)
result_matrix = H
title = ["Image 0", "Image 1 - warped"]
elif geom_type == "Fundamental":
H1, H2 = np.array(geo_info["H1"]), np.array(geo_info["H2"])
rectified_image0 = cv2.warpPerspective(img0, H1, (w1, h1))
rectified_image1 = cv2.warpPerspective(img1, H2, (w2, h2))
result_matrix = F
title = ["Image 0 - warped", "Image 1 - warped"]
else:
print("Error: Unknown geometry type")
fig = plot_images(
[rectified_image0.squeeze(), rectified_image1.squeeze()],
title,
dpi=300,
)
dictionary = {
"row1": result_matrix[0].tolist(),
"row2": result_matrix[1].tolist(),
"row3": result_matrix[2].tolist(),
}
return fig2im(fig), dictionary
else:
return None, None
def change_estimate_geom(input_image0, input_image1, matches_info, choice):
if (
matches_info is None
or len(matches_info) < 1
or "geom_info" not in matches_info.keys()
):
return None, None
geom_info = matches_info["geom_info"]
wrapped_images = None
if choice != "No":
wrapped_images, _ = wrap_images(
input_image0, input_image1, geom_info, choice
)
return wrapped_images, matches_info
else:
return None, None
def display_matches(pred: dict, titles=[], dpi=300):
img0 = pred["image0_orig"]
img1 = pred["image1_orig"]
num_inliers = 0
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
mkpts0 = pred["keypoints0_orig"]
mkpts1 = pred["keypoints1_orig"]
num_inliers = len(mkpts0)
if "mconf" in pred.keys():
mconf = pred["mconf"]
else:
mconf = np.ones(len(mkpts0))
fig_mkpts = draw_matches(
mkpts0,
mkpts1,
img0,
img1,
mconf,
dpi=dpi,
titles=titles,
)
fig = fig_mkpts
if "line0_orig" in pred.keys() and "line1_orig" in pred.keys():
# lines
mtlines0 = pred["line0_orig"]
mtlines1 = pred["line1_orig"]
num_inliers = len(mtlines0)
fig_lines = plot_images(
[img0.squeeze(), img1.squeeze()],
["Image 0 - matched lines", "Image 1 - matched lines"],
dpi=300,
)
fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
fig_lines = fig2im(fig_lines)
# keypoints
mkpts0 = pred["line_keypoints0_orig"]
mkpts1 = pred["line_keypoints1_orig"]
if mkpts0 is not None and mkpts1 is not None:
num_inliers = len(mkpts0)
if "mconf" in pred.keys():
mconf = pred["mconf"]
else:
mconf = np.ones(len(mkpts0))
fig_mkpts = draw_matches(mkpts0, mkpts1, img0, img1, mconf, dpi=300)
fig_lines = cv2.resize(
fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0])
)
fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
else:
fig = fig_lines
return fig, num_inliers
def run_matching(
image0,
image1,
match_threshold,
extract_max_keypoints,
keypoint_threshold,
key,
ransac_method=DEFAULT_RANSAC_METHOD,
ransac_reproj_threshold=DEFAULT_RANSAC_REPROJ_THRESHOLD,
ransac_confidence=DEFAULT_RANSAC_CONFIDENCE,
ransac_max_iter=DEFAULT_RANSAC_MAX_ITER,
choice_estimate_geom=DEFAULT_SETTING_GEOMETRY,
):
# image0 and image1 is RGB mode
if image0 is None or image1 is None:
raise gr.Error("Error: No images found! Please upload two images.")
# init output
output_keypoints = None
output_matches_raw = None
output_matches_ransac = None
model = matcher_zoo[key]
match_conf = model["config"]
# update match config
match_conf["model"]["match_threshold"] = match_threshold
match_conf["model"]["max_keypoints"] = extract_max_keypoints
matcher = get_model(match_conf)
if model["dense"]:
pred = match_dense.match_images(
matcher, image0, image1, match_conf["preprocessing"], device=device
)
del matcher
extract_conf = None
else:
extract_conf = model["config_feature"]
# update extract config
extract_conf["model"]["max_keypoints"] = extract_max_keypoints
extract_conf["model"]["keypoint_threshold"] = keypoint_threshold
extractor = get_feature_model(extract_conf)
pred0 = extract_features.extract(
extractor, image0, extract_conf["preprocessing"]
)
pred1 = extract_features.extract(
extractor, image1, extract_conf["preprocessing"]
)
pred = match_features.match_images(matcher, pred0, pred1)
del extractor
# plot images with keypoints
titles = [
"Image 0 - Keypoints",
"Image 1 - Keypoints",
]
output_keypoints = plot_images([image0, image1], titles=titles, dpi=300)
if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
plot_keypoints([pred["keypoints0"], pred["keypoints1"]])
text = (
f"# keypoints0: {len(pred['keypoints0'])} \n"
+ f"# keypoints1: {len(pred['keypoints1'])}"
)
add_text(0, text, fs=15)
output_keypoints = fig2im(output_keypoints)
# plot images with raw matches
titles = [
"Image 0 - Raw matched keypoints",
"Image 1 - Raw matched keypoints",
]
output_matches_raw, num_matches_raw = display_matches(pred, titles=titles)
# if enable_ransac:
filter_matches(
pred,
ransac_method=ransac_method,
ransac_reproj_threshold=ransac_reproj_threshold,
ransac_confidence=ransac_confidence,
ransac_max_iter=ransac_max_iter,
)
# plot images with ransac matches
titles = [
"Image 0 - Ransac matched keypoints",
"Image 1 - Ransac matched keypoints",
]
output_matches_ransac, num_matches_ransac = display_matches(
pred, titles=titles
)
# plot wrapped images
geom_info = compute_geom(pred)
output_wrapped, _ = change_estimate_geom(
pred["image0_orig"],
pred["image1_orig"],
{"geom_info": geom_info},
choice_estimate_geom,
)
del pred
return (
output_keypoints,
output_matches_raw,
output_matches_ransac,
{
"number raw matches": num_matches_raw,
"number ransac matches": num_matches_ransac,
},
{
"match_conf": match_conf,
"extractor_conf": extract_conf,
},
{
"geom_info": geom_info,
},
output_wrapped,
)
# @ref: https://docs.opencv.org/4.x/d0/d74/md__build_4_x-contrib_docs-lin64_opencv_doc_tutorials_calib3d_usac.html
# AND: https://opencv.org/blog/2021/06/09/evaluating-opencvs-new-ransacs
ransac_zoo = {
"RANSAC": cv2.RANSAC,
"USAC_MAGSAC": cv2.USAC_MAGSAC,
"USAC_DEFAULT": cv2.USAC_DEFAULT,
"USAC_FM_8PTS": cv2.USAC_FM_8PTS,
"USAC_PROSAC": cv2.USAC_PROSAC,
"USAC_FAST": cv2.USAC_FAST,
"USAC_ACCURATE": cv2.USAC_ACCURATE,
"USAC_PARALLEL": cv2.USAC_PARALLEL,
}
# Matchers collections
matcher_zoo = {
"gluestick": {"config": match_dense.confs["gluestick"], "dense": True},
"sold2": {"config": match_dense.confs["sold2"], "dense": True},
# 'dedode-sparse': {
# 'config': match_dense.confs['dedode_sparse'],
# 'dense': True # dense mode, we need 2 images
# },
"loftr": {"config": match_dense.confs["loftr"], "dense": True},
"topicfm": {"config": match_dense.confs["topicfm"], "dense": True},
"aspanformer": {"config": match_dense.confs["aspanformer"], "dense": True},
"dedode": {
"config": match_features.confs["Dual-Softmax"],
"config_feature": extract_features.confs["dedode"],
"dense": False,
},
"superpoint+superglue": {
"config": match_features.confs["superglue"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"superpoint+lightglue": {
"config": match_features.confs["superpoint-lightglue"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"disk": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["disk"],
"dense": False,
},
"disk+dualsoftmax": {
"config": match_features.confs["Dual-Softmax"],
"config_feature": extract_features.confs["disk"],
"dense": False,
},
"superpoint+dualsoftmax": {
"config": match_features.confs["Dual-Softmax"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"disk+lightglue": {
"config": match_features.confs["disk-lightglue"],
"config_feature": extract_features.confs["disk"],
"dense": False,
},
"superpoint+mnn": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["superpoint_max"],
"dense": False,
},
"sift+sgmnet": {
"config": match_features.confs["sgmnet"],
"config_feature": extract_features.confs["sift"],
"dense": False,
},
"sosnet": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["sosnet"],
"dense": False,
},
"hardnet": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["hardnet"],
"dense": False,
},
"d2net": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["d2net-ss"],
"dense": False,
},
"rord": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["rord"],
"dense": False,
},
# "d2net-ms": {
# "config": match_features.confs["NN-mutual"],
# "config_feature": extract_features.confs["d2net-ms"],
# "dense": False,
# },
"alike": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["alike"],
"dense": False,
},
"lanet": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["lanet"],
"dense": False,
},
"r2d2": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["r2d2"],
"dense": False,
},
"darkfeat": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["darkfeat"],
"dense": False,
},
"sift": {
"config": match_features.confs["NN-mutual"],
"config_feature": extract_features.confs["sift"],
"dense": False,
},
# "roma": {"config": match_dense.confs["roma"], "dense": True},
# "DKMv3": {"config": match_dense.confs["dkm"], "dense": True},
}
|