Spaces:
Running
Running
File size: 20,811 Bytes
f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf 4c12b36 f90cbcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 |
import warnings
import numpy as np
import cv2
import math
import torch
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import torch.nn.functional as F
from PIL import Image
import kornia
def recover_pose(E, kpts0, kpts1, K0, K1, mask):
best_num_inliers = 0
K0inv = np.linalg.inv(K0[:2, :2])
K1inv = np.linalg.inv(K1[:2, :2])
kpts0_n = (K0inv @ (kpts0 - K0[None, :2, 2]).T).T
kpts1_n = (K1inv @ (kpts1 - K1[None, :2, 2]).T).T
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(_E, kpts0_n, kpts1_n, np.eye(3), 1e9, mask=mask)
if n > best_num_inliers:
best_num_inliers = n
ret = (R, t, mask.ravel() > 0)
return ret
# Code taken from https://github.com/PruneTruong/DenseMatching/blob/40c29a6b5c35e86b9509e65ab0cd12553d998e5f/validation/utils_pose_estimation.py
# --- GEOMETRY ---
def estimate_pose(kpts0, kpts1, K0, K1, norm_thresh, conf=0.99999):
if len(kpts0) < 5:
return None
K0inv = np.linalg.inv(K0[:2, :2])
K1inv = np.linalg.inv(K1[:2, :2])
kpts0 = (K0inv @ (kpts0 - K0[None, :2, 2]).T).T
kpts1 = (K1inv @ (kpts1 - K1[None, :2, 2]).T).T
E, mask = cv2.findEssentialMat(
kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf
)
ret = None
if E is not None:
best_num_inliers = 0
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
if n > best_num_inliers:
best_num_inliers = n
ret = (R, t, mask.ravel() > 0)
return ret
def estimate_pose_uncalibrated(kpts0, kpts1, K0, K1, norm_thresh, conf=0.99999):
if len(kpts0) < 5:
return None
method = cv2.USAC_ACCURATE
F, mask = cv2.findFundamentalMat(
kpts0,
kpts1,
ransacReprojThreshold=norm_thresh,
confidence=conf,
method=method,
maxIters=10000,
)
E = K1.T @ F @ K0
ret = None
if E is not None:
best_num_inliers = 0
K0inv = np.linalg.inv(K0[:2, :2])
K1inv = np.linalg.inv(K1[:2, :2])
kpts0_n = (K0inv @ (kpts0 - K0[None, :2, 2]).T).T
kpts1_n = (K1inv @ (kpts1 - K1[None, :2, 2]).T).T
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(
_E, kpts0_n, kpts1_n, np.eye(3), 1e9, mask=mask
)
if n > best_num_inliers:
best_num_inliers = n
ret = (R, t, mask.ravel() > 0)
return ret
def unnormalize_coords(x_n, h, w):
x = torch.stack(
(w * (x_n[..., 0] + 1) / 2, h * (x_n[..., 1] + 1) / 2), dim=-1
) # [-1+1/h, 1-1/h] -> [0.5, h-0.5]
return x
def rotate_intrinsic(K, n):
base_rot = np.array([[0, 1, 0], [-1, 0, 0], [0, 0, 1]])
rot = np.linalg.matrix_power(base_rot, n)
return rot @ K
def rotate_pose_inplane(i_T_w, rot):
rotation_matrices = [
np.array(
[
[np.cos(r), -np.sin(r), 0.0, 0.0],
[np.sin(r), np.cos(r), 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
],
dtype=np.float32,
)
for r in [np.deg2rad(d) for d in (0, 270, 180, 90)]
]
return np.dot(rotation_matrices[rot], i_T_w)
def scale_intrinsics(K, scales):
scales = np.diag([1.0 / scales[0], 1.0 / scales[1], 1.0])
return np.dot(scales, K)
def to_homogeneous(points):
return np.concatenate([points, np.ones_like(points[:, :1])], axis=-1)
def angle_error_mat(R1, R2):
cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2
cos = np.clip(cos, -1.0, 1.0) # numercial errors can make it out of bounds
return np.rad2deg(np.abs(np.arccos(cos)))
def angle_error_vec(v1, v2):
n = np.linalg.norm(v1) * np.linalg.norm(v2)
return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0)))
def compute_pose_error(T_0to1, R, t):
R_gt = T_0to1[:3, :3]
t_gt = T_0to1[:3, 3]
error_t = angle_error_vec(t.squeeze(), t_gt)
error_t = np.minimum(error_t, 180 - error_t) # ambiguity of E estimation
error_R = angle_error_mat(R, R_gt)
return error_t, error_R
def pose_auc(errors, thresholds):
sort_idx = np.argsort(errors)
errors = np.array(errors.copy())[sort_idx]
recall = (np.arange(len(errors)) + 1) / len(errors)
errors = np.r_[0.0, errors]
recall = np.r_[0.0, recall]
aucs = []
for t in thresholds:
last_index = np.searchsorted(errors, t)
r = np.r_[recall[:last_index], recall[last_index - 1]]
e = np.r_[errors[:last_index], t]
aucs.append(np.trapz(r, x=e) / t)
return aucs
# From Patch2Pix https://github.com/GrumpyZhou/patch2pix
def get_depth_tuple_transform_ops_nearest_exact(resize=None):
ops = []
if resize:
ops.append(TupleResizeNearestExact(resize))
return TupleCompose(ops)
def get_depth_tuple_transform_ops(resize=None, normalize=True, unscale=False):
ops = []
if resize:
ops.append(TupleResize(resize, mode=InterpolationMode.BILINEAR))
return TupleCompose(ops)
def get_tuple_transform_ops(
resize=None, normalize=True, unscale=False, clahe=False, colorjiggle_params=None
):
ops = []
if resize:
ops.append(TupleResize(resize))
ops.append(TupleToTensorScaled())
if normalize:
ops.append(
TupleNormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
) # Imagenet mean/std
return TupleCompose(ops)
class ToTensorScaled(object):
"""Convert a RGB PIL Image to a CHW ordered Tensor, scale the range to [0, 1]"""
def __call__(self, im):
if not isinstance(im, torch.Tensor):
im = np.array(im, dtype=np.float32).transpose((2, 0, 1))
im /= 255.0
return torch.from_numpy(im)
else:
return im
def __repr__(self):
return "ToTensorScaled(./255)"
class TupleToTensorScaled(object):
def __init__(self):
self.to_tensor = ToTensorScaled()
def __call__(self, im_tuple):
return [self.to_tensor(im) for im in im_tuple]
def __repr__(self):
return "TupleToTensorScaled(./255)"
class ToTensorUnscaled(object):
"""Convert a RGB PIL Image to a CHW ordered Tensor"""
def __call__(self, im):
return torch.from_numpy(np.array(im, dtype=np.float32).transpose((2, 0, 1)))
def __repr__(self):
return "ToTensorUnscaled()"
class TupleToTensorUnscaled(object):
"""Convert a RGB PIL Image to a CHW ordered Tensor"""
def __init__(self):
self.to_tensor = ToTensorUnscaled()
def __call__(self, im_tuple):
return [self.to_tensor(im) for im in im_tuple]
def __repr__(self):
return "TupleToTensorUnscaled()"
class TupleResizeNearestExact:
def __init__(self, size):
self.size = size
def __call__(self, im_tuple):
return [
F.interpolate(im, size=self.size, mode="nearest-exact") for im in im_tuple
]
def __repr__(self):
return "TupleResizeNearestExact(size={})".format(self.size)
class TupleResize(object):
def __init__(self, size, mode=InterpolationMode.BICUBIC):
self.size = size
self.resize = transforms.Resize(size, mode)
def __call__(self, im_tuple):
return [self.resize(im) for im in im_tuple]
def __repr__(self):
return "TupleResize(size={})".format(self.size)
class Normalize:
def __call__(self, im):
mean = im.mean(dim=(1, 2), keepdims=True)
std = im.std(dim=(1, 2), keepdims=True)
return (im - mean) / std
class TupleNormalize(object):
def __init__(self, mean, std):
self.mean = mean
self.std = std
self.normalize = transforms.Normalize(mean=mean, std=std)
def __call__(self, im_tuple):
c, h, w = im_tuple[0].shape
if c > 3:
warnings.warn(f"Number of channels c={c} > 3, assuming first 3 are rgb")
return [self.normalize(im[:3]) for im in im_tuple]
def __repr__(self):
return "TupleNormalize(mean={}, std={})".format(self.mean, self.std)
class TupleCompose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, im_tuple):
for t in self.transforms:
im_tuple = t(im_tuple)
return im_tuple
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
@torch.no_grad()
def cls_to_flow(cls, deterministic_sampling=True):
B, C, H, W = cls.shape
device = cls.device
res = round(math.sqrt(C))
G = torch.meshgrid(
*[
torch.linspace(-1 + 1 / res, 1 - 1 / res, steps=res, device=device)
for _ in range(2)
]
)
G = torch.stack([G[1], G[0]], dim=-1).reshape(C, 2)
if deterministic_sampling:
sampled_cls = cls.max(dim=1).indices
else:
sampled_cls = torch.multinomial(
cls.permute(0, 2, 3, 1).reshape(B * H * W, C).softmax(dim=-1), 1
).reshape(B, H, W)
flow = G[sampled_cls]
return flow
@torch.no_grad()
def cls_to_flow_refine(cls):
B, C, H, W = cls.shape
device = cls.device
res = round(math.sqrt(C))
G = torch.meshgrid(
*[
torch.linspace(-1 + 1 / res, 1 - 1 / res, steps=res, device=device)
for _ in range(2)
]
)
G = torch.stack([G[1], G[0]], dim=-1).reshape(C, 2)
cls = cls.softmax(dim=1)
mode = cls.max(dim=1).indices
index = (
torch.stack((mode - 1, mode, mode + 1, mode - res, mode + res), dim=1)
.clamp(0, C - 1)
.long()
)
neighbours = torch.gather(cls, dim=1, index=index)[..., None]
flow = (
neighbours[:, 0] * G[index[:, 0]]
+ neighbours[:, 1] * G[index[:, 1]]
+ neighbours[:, 2] * G[index[:, 2]]
+ neighbours[:, 3] * G[index[:, 3]]
+ neighbours[:, 4] * G[index[:, 4]]
)
tot_prob = neighbours.sum(dim=1)
flow = flow / tot_prob
return flow
def get_gt_warp(
depth1,
depth2,
T_1to2,
K1,
K2,
depth_interpolation_mode="bilinear",
relative_depth_error_threshold=0.05,
H=None,
W=None,
):
if H is None:
B, H, W = depth1.shape
else:
B = depth1.shape[0]
with torch.no_grad():
x1_n = torch.meshgrid(
*[
torch.linspace(-1 + 1 / n, 1 - 1 / n, n, device=depth1.device)
for n in (B, H, W)
]
)
x1_n = torch.stack((x1_n[2], x1_n[1]), dim=-1).reshape(B, H * W, 2)
mask, x2 = warp_kpts(
x1_n.double(),
depth1.double(),
depth2.double(),
T_1to2.double(),
K1.double(),
K2.double(),
depth_interpolation_mode=depth_interpolation_mode,
relative_depth_error_threshold=relative_depth_error_threshold,
)
prob = mask.float().reshape(B, H, W)
x2 = x2.reshape(B, H, W, 2)
return x2, prob
@torch.no_grad()
def warp_kpts(
kpts0,
depth0,
depth1,
T_0to1,
K0,
K1,
smooth_mask=False,
return_relative_depth_error=False,
depth_interpolation_mode="bilinear",
relative_depth_error_threshold=0.05,
):
"""Warp kpts0 from I0 to I1 with depth, K and Rt
Also check covisibility and depth consistency.
Depth is consistent if relative error < 0.2 (hard-coded).
# https://github.com/zju3dv/LoFTR/blob/94e98b695be18acb43d5d3250f52226a8e36f839/src/loftr/utils/geometry.py adapted from here
Args:
kpts0 (torch.Tensor): [N, L, 2] - <x, y>, should be normalized in (-1,1)
depth0 (torch.Tensor): [N, H, W],
depth1 (torch.Tensor): [N, H, W],
T_0to1 (torch.Tensor): [N, 3, 4],
K0 (torch.Tensor): [N, 3, 3],
K1 (torch.Tensor): [N, 3, 3],
Returns:
calculable_mask (torch.Tensor): [N, L]
warped_keypoints0 (torch.Tensor): [N, L, 2] <x0_hat, y1_hat>
"""
(
n,
h,
w,
) = depth0.shape
if depth_interpolation_mode == "combined":
# Inspired by approach in inloc, try to fill holes from bilinear interpolation by nearest neighbour interpolation
if smooth_mask:
raise NotImplementedError("Combined bilinear and NN warp not implemented")
valid_bilinear, warp_bilinear = warp_kpts(
kpts0,
depth0,
depth1,
T_0to1,
K0,
K1,
smooth_mask=smooth_mask,
return_relative_depth_error=return_relative_depth_error,
depth_interpolation_mode="bilinear",
relative_depth_error_threshold=relative_depth_error_threshold,
)
valid_nearest, warp_nearest = warp_kpts(
kpts0,
depth0,
depth1,
T_0to1,
K0,
K1,
smooth_mask=smooth_mask,
return_relative_depth_error=return_relative_depth_error,
depth_interpolation_mode="nearest-exact",
relative_depth_error_threshold=relative_depth_error_threshold,
)
nearest_valid_bilinear_invalid = (~valid_bilinear).logical_and(valid_nearest)
warp = warp_bilinear.clone()
warp[nearest_valid_bilinear_invalid] = warp_nearest[
nearest_valid_bilinear_invalid
]
valid = valid_bilinear | valid_nearest
return valid, warp
kpts0_depth = F.grid_sample(
depth0[:, None],
kpts0[:, :, None],
mode=depth_interpolation_mode,
align_corners=False,
)[:, 0, :, 0]
kpts0 = torch.stack(
(w * (kpts0[..., 0] + 1) / 2, h * (kpts0[..., 1] + 1) / 2), dim=-1
) # [-1+1/h, 1-1/h] -> [0.5, h-0.5]
# Sample depth, get calculable_mask on depth != 0
nonzero_mask = kpts0_depth != 0
# Unproject
kpts0_h = (
torch.cat([kpts0, torch.ones_like(kpts0[:, :, [0]])], dim=-1)
* kpts0_depth[..., None]
) # (N, L, 3)
kpts0_n = K0.inverse() @ kpts0_h.transpose(2, 1) # (N, 3, L)
kpts0_cam = kpts0_n
# Rigid Transform
w_kpts0_cam = T_0to1[:, :3, :3] @ kpts0_cam + T_0to1[:, :3, [3]] # (N, 3, L)
w_kpts0_depth_computed = w_kpts0_cam[:, 2, :]
# Project
w_kpts0_h = (K1 @ w_kpts0_cam).transpose(2, 1) # (N, L, 3)
w_kpts0 = w_kpts0_h[:, :, :2] / (
w_kpts0_h[:, :, [2]] + 1e-4
) # (N, L, 2), +1e-4 to avoid zero depth
# Covisible Check
h, w = depth1.shape[1:3]
covisible_mask = (
(w_kpts0[:, :, 0] > 0)
* (w_kpts0[:, :, 0] < w - 1)
* (w_kpts0[:, :, 1] > 0)
* (w_kpts0[:, :, 1] < h - 1)
)
w_kpts0 = torch.stack(
(2 * w_kpts0[..., 0] / w - 1, 2 * w_kpts0[..., 1] / h - 1), dim=-1
) # from [0.5,h-0.5] -> [-1+1/h, 1-1/h]
# w_kpts0[~covisible_mask, :] = -5 # xd
w_kpts0_depth = F.grid_sample(
depth1[:, None],
w_kpts0[:, :, None],
mode=depth_interpolation_mode,
align_corners=False,
)[:, 0, :, 0]
relative_depth_error = (
(w_kpts0_depth - w_kpts0_depth_computed) / w_kpts0_depth
).abs()
if not smooth_mask:
consistent_mask = relative_depth_error < relative_depth_error_threshold
else:
consistent_mask = (-relative_depth_error / smooth_mask).exp()
valid_mask = nonzero_mask * covisible_mask * consistent_mask
if return_relative_depth_error:
return relative_depth_error, w_kpts0
else:
return valid_mask, w_kpts0
imagenet_mean = torch.tensor([0.485, 0.456, 0.406])
imagenet_std = torch.tensor([0.229, 0.224, 0.225])
def numpy_to_pil(x: np.ndarray):
"""
Args:
x: Assumed to be of shape (h,w,c)
"""
if isinstance(x, torch.Tensor):
x = x.detach().cpu().numpy()
if x.max() <= 1.01:
x *= 255
x = x.astype(np.uint8)
return Image.fromarray(x)
def tensor_to_pil(x, unnormalize=False):
if unnormalize:
x = x * (imagenet_std[:, None, None].to(x.device)) + (
imagenet_mean[:, None, None].to(x.device)
)
x = x.detach().permute(1, 2, 0).cpu().numpy()
x = np.clip(x, 0.0, 1.0)
return numpy_to_pil(x)
def to_cuda(batch):
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch[key] = value.cuda()
return batch
def to_cpu(batch):
for key, value in batch.items():
if isinstance(value, torch.Tensor):
batch[key] = value.cpu()
return batch
def get_pose(calib):
w, h = np.array(calib["imsize"])[0]
return np.array(calib["K"]), np.array(calib["R"]), np.array(calib["T"]).T, h, w
def compute_relative_pose(R1, t1, R2, t2):
rots = R2 @ (R1.T)
trans = -rots @ t1 + t2
return rots, trans
@torch.no_grad()
def reset_opt(opt):
for group in opt.param_groups:
for p in group["params"]:
if p.requires_grad:
state = opt.state[p]
# State initialization
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p)
# Exponential moving average of gradient difference
state["exp_avg_diff"] = torch.zeros_like(p)
def flow_to_pixel_coords(flow, h1, w1):
flow = torch.stack(
(
w1 * (flow[..., 0] + 1) / 2,
h1 * (flow[..., 1] + 1) / 2,
),
axis=-1,
)
return flow
def flow_to_normalized_coords(flow, h1, w1):
flow = torch.stack(
(
2 * (flow[..., 0]) / w1 - 1,
2 * (flow[..., 1]) / h1 - 1,
),
axis=-1,
)
return flow
def warp_to_pixel_coords(warp, h1, w1, h2, w2):
warp1 = warp[..., :2]
warp1 = torch.stack(
(
w1 * (warp1[..., 0] + 1) / 2,
h1 * (warp1[..., 1] + 1) / 2,
),
axis=-1,
)
warp2 = warp[..., 2:]
warp2 = torch.stack(
(
w2 * (warp2[..., 0] + 1) / 2,
h2 * (warp2[..., 1] + 1) / 2,
),
axis=-1,
)
return torch.cat((warp1, warp2), dim=-1)
def signed_point_line_distance(point, line, eps: float = 1e-9):
r"""Return the distance from points to lines.
Args:
point: (possibly homogeneous) points :math:`(*, N, 2 or 3)`.
line: lines coefficients :math:`(a, b, c)` with shape :math:`(*, N, 3)`, where :math:`ax + by + c = 0`.
eps: Small constant for safe sqrt.
Returns:
the computed distance with shape :math:`(*, N)`.
"""
if not point.shape[-1] in (2, 3):
raise ValueError(f"pts must be a (*, 2 or 3) tensor. Got {point.shape}")
if not line.shape[-1] == 3:
raise ValueError(f"lines must be a (*, 3) tensor. Got {line.shape}")
numerator = (
line[..., 0] * point[..., 0] + line[..., 1] * point[..., 1] + line[..., 2]
)
denominator = line[..., :2].norm(dim=-1)
return numerator / (denominator + eps)
def signed_left_to_right_epipolar_distance(pts1, pts2, Fm):
r"""Return one-sided epipolar distance for correspondences given the fundamental matrix.
This method measures the distance from points in the right images to the epilines
of the corresponding points in the left images as they reflect in the right images.
Args:
pts1: correspondences from the left images with shape
:math:`(*, N, 2 or 3)`. If they are not homogeneous, converted automatically.
pts2: correspondences from the right images with shape
:math:`(*, N, 2 or 3)`. If they are not homogeneous, converted automatically.
Fm: Fundamental matrices with shape :math:`(*, 3, 3)`. Called Fm to
avoid ambiguity with torch.nn.functional.
Returns:
the computed Symmetrical distance with shape :math:`(*, N)`.
"""
import kornia
if (len(Fm.shape) < 3) or not Fm.shape[-2:] == (3, 3):
raise ValueError(f"Fm must be a (*, 3, 3) tensor. Got {Fm.shape}")
if pts1.shape[-1] == 2:
pts1 = kornia.geometry.convert_points_to_homogeneous(pts1)
F_t = Fm.transpose(dim0=-2, dim1=-1)
line1_in_2 = pts1 @ F_t
return signed_point_line_distance(pts2, line1_in_2)
def get_grid(b, h, w, device):
grid = torch.meshgrid(
*[torch.linspace(-1 + 1 / n, 1 - 1 / n, n, device=device) for n in (b, h, w)]
)
grid = torch.stack((grid[2], grid[1]), dim=-1).reshape(b, h, w, 2)
return grid
|