Spaces:
Running
Running
File size: 3,696 Bytes
efd3cc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
class DenseFeatureExtractionModule(nn.Module):
def __init__(self, finetune_feature_extraction=False, use_cuda=True):
super(DenseFeatureExtractionModule, self).__init__()
model = models.vgg16()
vgg16_layers = [
'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2',
'pool1',
'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2',
'pool2',
'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3',
'pool3',
'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3',
'pool4',
'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3',
'pool5'
]
conv4_3_idx = vgg16_layers.index('conv4_3')
self.model = nn.Sequential(
*list(model.features.children())[: conv4_3_idx + 1]
)
self.num_channels = 512
# Fix forward parameters
for param in self.model.parameters():
param.requires_grad = False
if finetune_feature_extraction:
# Unlock conv4_3
for param in list(self.model.parameters())[-2 :]:
param.requires_grad = True
if use_cuda:
self.model = self.model.cuda()
def forward(self, batch):
output = self.model(batch)
return output
class SoftDetectionModule(nn.Module):
def __init__(self, soft_local_max_size=3):
super(SoftDetectionModule, self).__init__()
self.soft_local_max_size = soft_local_max_size
self.pad = self.soft_local_max_size // 2
def forward(self, batch):
b = batch.size(0)
batch = F.relu(batch)
max_per_sample = torch.max(batch.view(b, -1), dim=1)[0]
exp = torch.exp(batch / max_per_sample.view(b, 1, 1, 1))
sum_exp = (
self.soft_local_max_size ** 2 *
F.avg_pool2d(
F.pad(exp, [self.pad] * 4, mode='constant', value=1.),
self.soft_local_max_size, stride=1
)
)
local_max_score = exp / sum_exp
depth_wise_max = torch.max(batch, dim=1)[0]
depth_wise_max_score = batch / depth_wise_max.unsqueeze(1)
all_scores = local_max_score * depth_wise_max_score
score = torch.max(all_scores, dim=1)[0]
score = score / torch.sum(score.view(b, -1), dim=1).view(b, 1, 1)
return score
class D2Net(nn.Module):
def __init__(self, model_file=None, use_cuda=True):
super(D2Net, self).__init__()
self.dense_feature_extraction = DenseFeatureExtractionModule(
finetune_feature_extraction=True,
use_cuda=use_cuda
)
self.detection = SoftDetectionModule()
if model_file is not None:
if use_cuda:
self.load_state_dict(torch.load(model_file)['model'])
else:
self.load_state_dict(torch.load(model_file, map_location='cpu')['model'])
def forward(self, batch):
b = batch['image1'].size(0)
dense_features = self.dense_feature_extraction(
torch.cat([batch['image1'], batch['image2']], dim=0)
)
scores = self.detection(dense_features)
dense_features1 = dense_features[: b, :, :, :]
dense_features2 = dense_features[b :, :, :, :]
scores1 = scores[: b, :, :]
scores2 = scores[b :, :, :]
return {
'dense_features1': dense_features1,
'scores1': scores1,
'dense_features2': dense_features2,
'scores2': scores2
}
|