File size: 5,344 Bytes
f90cbcf
 
 
 
 
 
 
 
ad930bf
 
f90cbcf
 
4c12b36
 
 
 
 
 
 
 
 
 
 
f90cbcf
 
4c12b36
f90cbcf
 
 
 
4c12b36
 
 
f90cbcf
4c12b36
 
 
 
f90cbcf
 
 
 
ab91bfc
 
 
 
 
4c12b36
ab91bfc
f90cbcf
 
ad930bf
f90cbcf
4c12b36
f90cbcf
 
 
4c12b36
f90cbcf
 
4c12b36
f90cbcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c12b36
f90cbcf
4c12b36
f90cbcf
 
 
ab91bfc
 
 
 
 
4c12b36
ab91bfc
f90cbcf
 
ad930bf
f90cbcf
 
 
 
 
4c12b36
f90cbcf
 
 
4c12b36
f90cbcf
4c12b36
f90cbcf
 
4c12b36
 
 
 
f90cbcf
4c12b36
 
 
 
 
 
 
f90cbcf
 
 
 
 
 
 
 
 
 
ab91bfc
 
 
 
 
4c12b36
ab91bfc
f90cbcf
 
4c12b36
 
f90cbcf
 
4c12b36
 
 
f90cbcf
4c12b36
f90cbcf
 
 
4c12b36
 
 
 
 
 
 
 
 
 
 
f90cbcf
 
4c12b36
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from typing import Optional, Union
import torch
from torch import device
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as tvm
import gc

device = "cuda" if torch.cuda.is_available() else "cpu"


class ResNet50(nn.Module):
    def __init__(
        self,
        pretrained=False,
        high_res=False,
        weights=None,
        dilation=None,
        freeze_bn=True,
        anti_aliased=False,
        early_exit=False,
        amp=False,
    ) -> None:
        super().__init__()
        if dilation is None:
            dilation = [False, False, False]
        if anti_aliased:
            pass
        else:
            if weights is not None:
                self.net = tvm.resnet50(
                    weights=weights, replace_stride_with_dilation=dilation
                )
            else:
                self.net = tvm.resnet50(
                    pretrained=pretrained, replace_stride_with_dilation=dilation
                )

        self.high_res = high_res
        self.freeze_bn = freeze_bn
        self.early_exit = early_exit
        self.amp = amp
        if torch.cuda.is_available():
            if torch.cuda.is_bf16_supported():
                self.amp_dtype = torch.bfloat16
            else:
                self.amp_dtype = torch.float16
        else:
            self.amp_dtype = torch.float32

    def forward(self, x, **kwargs):
        with torch.autocast(device, enabled=self.amp, dtype=self.amp_dtype):
            net = self.net
            feats = {1: x}
            x = net.conv1(x)
            x = net.bn1(x)
            x = net.relu(x)
            feats[2] = x
            x = net.maxpool(x)
            x = net.layer1(x)
            feats[4] = x
            x = net.layer2(x)
            feats[8] = x
            if self.early_exit:
                return feats
            x = net.layer3(x)
            feats[16] = x
            x = net.layer4(x)
            feats[32] = x
            return feats

    def train(self, mode=True):
        super().train(mode)
        if self.freeze_bn:
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
                pass


class VGG19(nn.Module):
    def __init__(self, pretrained=False, amp=False) -> None:
        super().__init__()
        self.layers = nn.ModuleList(tvm.vgg19_bn(pretrained=pretrained).features[:40])
        self.amp = amp
        if torch.cuda.is_available():
            if torch.cuda.is_bf16_supported():
                self.amp_dtype = torch.bfloat16
            else:
                self.amp_dtype = torch.float16
        else:
            self.amp_dtype = torch.float32

    def forward(self, x, **kwargs):
        with torch.autocast(device, enabled=self.amp, dtype=self.amp_dtype):
            feats = {}
            scale = 1
            for layer in self.layers:
                if isinstance(layer, nn.MaxPool2d):
                    feats[scale] = x
                    scale = scale * 2
                x = layer(x)
            return feats


class CNNandDinov2(nn.Module):
    def __init__(self, cnn_kwargs=None, amp=False, use_vgg=False, dinov2_weights=None):
        super().__init__()
        if dinov2_weights is None:
            dinov2_weights = torch.hub.load_state_dict_from_url(
                "https://dl.fbaipublicfiles.com/dinov2/dinov2_vitl14/dinov2_vitl14_pretrain.pth",
                map_location="cpu",
            )
        from .transformer import vit_large

        vit_kwargs = dict(
            img_size=518,
            patch_size=14,
            init_values=1.0,
            ffn_layer="mlp",
            block_chunks=0,
        )

        dinov2_vitl14 = vit_large(**vit_kwargs).eval()
        dinov2_vitl14.load_state_dict(dinov2_weights)
        cnn_kwargs = cnn_kwargs if cnn_kwargs is not None else {}
        if not use_vgg:
            self.cnn = ResNet50(**cnn_kwargs)
        else:
            self.cnn = VGG19(**cnn_kwargs)
        self.amp = amp
        if torch.cuda.is_available():
            if torch.cuda.is_bf16_supported():
                self.amp_dtype = torch.bfloat16
            else:
                self.amp_dtype = torch.float16
        else:
            self.amp_dtype = torch.float32
        if self.amp:
            dinov2_vitl14 = dinov2_vitl14.to(self.amp_dtype)
        self.dinov2_vitl14 = [dinov2_vitl14]  # ugly hack to not show parameters to DDP

    def train(self, mode: bool = True):
        return self.cnn.train(mode)

    def forward(self, x, upsample=False):
        B, C, H, W = x.shape
        feature_pyramid = self.cnn(x)

        if not upsample:
            with torch.no_grad():
                if self.dinov2_vitl14[0].device != x.device:
                    self.dinov2_vitl14[0] = (
                        self.dinov2_vitl14[0].to(x.device).to(self.amp_dtype)
                    )
                dinov2_features_16 = self.dinov2_vitl14[0].forward_features(
                    x.to(self.amp_dtype)
                )
                features_16 = (
                    dinov2_features_16["x_norm_patchtokens"]
                    .permute(0, 2, 1)
                    .reshape(B, 1024, H // 14, W // 14)
                )
                del dinov2_features_16
                feature_pyramid[16] = features_16
        return feature_pyramid